OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1501–1509

Design and epitaxy of 1.5 μm InGaAsP-InP MQW material for a transistor laser

Zigang Duan, Wei Shi, Lukas Chrostowski, Xiaodong Huang, Ning Zhou, and Guangyue Chai  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1501-1509 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An InGaAsP-InP transistor laser (TL) at 1.55 μm has been designed and modeled. The proposed TL has a deep-ridge waveguide structure with the multiple quantum wells (MQWs) buried in the base-emitter junction, which provides good optical and electrical confinement and can effectively reduce the optical absorption and lateral leakage current. Good laser performance has been predicted by numerical modeling based on which the epitaxial growth was carried out by metalorganic chemical vapor deposition (MOCVD). The effect of p-dopant (Zn) diffusion on the QW performance was investigated by a re-growth procedure. By introducing a graded p-doping profile, the Zn diffusion into the MQWs was effectively controlled. With an average doping density of 1 × 1018 cm−3 in the base contact layer, the InGaAsP MQWs demonstrated high PL intensity at 1.51 μm and clear satellite diffraction peaks in the XRD spectrum.

© 2010 OSA

OCIS Codes
(160.3380) Materials : Laser materials
(230.0250) Optical devices : Optoelectronics
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 30, 2009
Revised Manuscript: December 25, 2009
Manuscript Accepted: January 5, 2010
Published: January 12, 2010

Zigang Duan, Wei Shi, Lukas Chrostowski, Xiaodong Huang, Ning Zhou, and Guangyue Chai, "Design and epitaxy of 1.5 μm InGaAsP-InP MQW material for a transistor laser," Opt. Express 18, 1501-1509 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectr. 43(2), 50–55 (2006). [CrossRef]
  2. B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009). [CrossRef]
  3. B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008). [CrossRef]
  4. W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008). [CrossRef]
  5. M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009). [CrossRef]
  6. M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007). [CrossRef]
  7. Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008). [CrossRef]
  8. M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005). [CrossRef]
  9. F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008). [CrossRef]
  10. A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990). [CrossRef]
  11. P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996). [CrossRef]
  12. A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000). [CrossRef]
  13. J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000). [CrossRef]
  14. Z.-M. Li, “Physical models and numerical simulation of modern semiconductor lasers,” Proc. SPIE 2994, 698–708 (1997). [CrossRef]
  15. G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996). [CrossRef]
  16. K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005). [CrossRef]
  17. B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006). [CrossRef]
  18. I. Joindot and J. L. Beylat, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993). [CrossRef]
  19. W. Shi, and Z. Duan, R. Vafaei, N. Rouger, B. Faraji, and L. Chrostowski, “Simulation of a 1550 nm InGaAsP-InP transistor laser”, Proc. SPIE 7516, 75160P–1-75160P–7 (2009).
  20. W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981). [CrossRef]
  21. O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited