OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1553–1568

Detailed characterization of pump-induced refractive index changes observed in 
Nd:YVO4, Nd:GdVO4 and Nd:KGW

R. Soulard, A. Zinoviev, J.L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 1553-1568 (2010)
http://dx.doi.org/10.1364/OE.18.001553


View Full Text Article

Enhanced HTML    Acrobat PDF (328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The refractive index changes which can be induced in the Nd:YVO4, Nd:GdVO4 and Nd:KGW high gain laser crystals, when their Nd3+ laser active ions are pumped from their ground- to excited- energy levels, have been carefully measured and characterized. By using two complementary optical techniques based on pump-probe interferometry and transient diffraction grating, the electronic and thermal contributions to the observed refractive index variations have been accurately determined and successfully exploited to derive various parameters such as polarizability changes, thermo-optic coefficients and thermal diffusivities.

© 2010 OSA

OCIS Codes
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(160.3380) Materials : Laser materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

ToC Category:
Materials

History
Original Manuscript: October 26, 2009
Revised Manuscript: December 14, 2009
Manuscript Accepted: December 15, 2009
Published: January 13, 2010

Citation
R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, "Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW," Opt. Express 18, 1553-1568 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1553


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Fotiadi, O. L. Antipov, and P. Mégret, “Dynamics of pump-induced refractive index changes in single-mode Yb-doped optical fibers,” Opt. Express 16(17), 12658–12663 (2008). [PubMed]
  2. S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99(24), 243902 (2007). [CrossRef]
  3. J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of the variations in refractive index of a Nd:YAG laser crystal: experiments and crystal-field calculations,” Phys. Rev. B 74(23), 235108 (2006). [CrossRef]
  4. O. N. Eremeykin, O. L. Antipov, A. Minassian, and M. J. Damzen, “Efficient continuous-wave generation in a self-organizing diode-pumped Nd:YVO4 laser with a reciprocal dynamic holographic cavity,” Opt. Lett. 29(20), 2390–2392 (2004). [CrossRef] [PubMed]
  5. O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003). [CrossRef]
  6. P. Sillard, A. Brignon, J. P. Huignard, and J. P. Pocholle, “Gain-grating analysis of a self-starting self-pumped phase-conjugate Nd:YAG loop resonator,” IEEE J. Quantum Electron. 34(3), 465–472 (1998). [CrossRef]
  7. R. C. Powell, in Physics of Solid State Laser Materials, New-York-Berlin-Heidelberg, Springer-Verlag 1998.
  8. R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Index of refraction change in optically pumped solid-state laser materials”, Opt. Lett . 14, 1204–1206 (1989) + “Four-wave mixing of Nd3+ doped crystals and glasses,” Phys. Rev. B 41(13), 8593–8602 (1990). [CrossRef] [PubMed]
  9. O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31(6), 763–765 (2006). [CrossRef] [PubMed]
  10. R. Moncorgé, O. N. Ereymekin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281(9), 2526–2530 (2008). [CrossRef]
  11. N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorgé, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531–538 (2004). [CrossRef]
  12. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003). [CrossRef] [PubMed]
  13. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312(5775), 895–897 (2006). [CrossRef] [PubMed]
  14. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006). [CrossRef]
  15. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004). [CrossRef] [PubMed]
  16. I. McMichael, R. Saxena, T. Y. Chang, Q. Shu, S. Rand, J. Chen, and H. Tuller, “High-gain nondegenerate two-wave mixing in Cr:YAIO(3),” Opt. Lett. 19(19), 1511–1513 (1994). [CrossRef] [PubMed]
  17. A. Brignon and J. P. Huignard, “Two-wave mixing in Nd:YAG with gain saturation,” Opt. Lett. 18(19), 1639–1641 (1993). [CrossRef] [PubMed]
  18. H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings, Springer, New York Berlin Heidelberg, 1986.
  19. E. P. Riedel and G. D. Baldwin, “Theory of dynamic optical distortion in isotropic laser materials,” J. Appl. Phys. 38(7), 2720–2725 (1967). [CrossRef]
  20. T. K. Gaylord and M. G. Moharam, “Thin and thick gratings: terminology clarification,” Appl. Opt. 20(19), 3271–3273 (1981). [CrossRef] [PubMed]
  21. E. V. Ivakin, A. V. Sukhadolau, O. L. Antipov, and N. V. Kuleshov, “Transient grating measurements of refractive-index changes in intensively pumped Yb-doped laser crystals,” Appl. Phys. B 86(2), 315–318 (2007). [CrossRef]
  22. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993). [CrossRef]
  23. J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16(12), 8995–9010 (2008). [CrossRef] [PubMed]
  24. Y. Sato, T. Taira, “Thermo-optical and –mechanical patrameters of Nd:GdVO4 and Nd:YVO4”, OSA/CLEO 2007, Tech. Digest paper JWA87.
  25. A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100 W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005). [CrossRef]
  26. I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+ (KGW:Nd),” Opt. Eng. 36(6), 1660–1669 (1997). [CrossRef]
  27. A. Lagatsky, A. Abdolvand, and N. V. Kuleshov, “Passive Q-switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO4)2 laser,” Opt. Lett. 25(9), 616–618 (2000). [CrossRef]
  28. V. V. Filippov, N. V. Kuleshov, and I. T. Bodnar, “Negative thermo-optical coefficients and athermal directions in monoclinic KGd(WO4)2 and KY(WO4)2 laser host crystals in the visible region,” Appl. Phys. B 87(4), 611–614 (2007). [CrossRef]
  29. S. Biswal, S. P. O’Connor, and S. R. Bowman, “Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate,” Appl. Opt. 44(15), 3093–3097 (2005). [CrossRef] [PubMed]
  30. Ph. Boutinaud, R. Mahiou, E. Cavalli, and M. Bettinelli, “Excited-state dynamics of Pr3+ doped YVO4 crystals,” J. Appl. Phys. 96(9), 4923–4929 (2004). [CrossRef]
  31. E. Nakazawa, “The lowest 4f-to-5d and charge-transfer transitions of rare earth ions in YPO4 hosts,” J. Lumin. 100(1-4), 89–96 (2002). [CrossRef]
  32. M. Laroche, S. Girard, J. Margerie, R. Moncorgé, M. Bettinelli, and E. Cavalli, “Experimental and theoretical investigation of the 4fn – 4fn-15d transitions in YPO4:Pr3+ and YPO4:Pr3+,Ce3+,” J. Phys. Condens. Matter 13(4), 765–776 (2001). [CrossRef]
  33. O. Guillot-Noel, B. Bellamy, B. Viana, and D. Gourier, “Correlation between rare-earth oscillator strengths and rare-earth-valence-band interactions in neodynium doped YMO4 (M=V,P,As), Y3Al5O12 and LiYF4,” Phys. Rev. B 60(3), 1668–1677 (1999). [CrossRef]
  34. P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91(3-4), 155–176 (2000). [CrossRef]
  35. F. Seitz, The Modern Theory of Solids, McGraw-Hill, New-York, 1940.
  36. N. V. Kuleshov, A. S. Shinkevitch, V. G. Shcherbitsky, V. P. Mikhailov, T. Danger, T. Sandrock, and G. Huber, “Luminescence and time-resolved excited-state absorption measurements in Pr3+ doped La2Be2O5 and KGd(WO4)2,” Opt. Mater. 5(1-2), 111–118 (1996). [CrossRef]
  37. A. H. Krumpel, Ph. Boutinaud, E. vander Kolk, and P. Dorenbos, “Charge transfer transitions in the transition metal oxides ABO4:Ln3+ (A = La, Gd, Y, Lu, Sc; B = V, Nb, Ta; Ln = lanthanides,” J. Lumin. (to appear).
  38. Ph. Boutinaud, R. Mahiou, E. Cavalli, and M. Bettinelli, “Red luminescence induced by intervalence charge transfer in Pr3+ doped compounds,” J. Lumin. 122–123, 430–433 (2007). [CrossRef]
  39. A. H. Krumpel, E. vander Kolk, P. Dorenbos, Ph. Boutinaud, E. Cavalli, and M. Bettinelli, “Energy level diagram for lanthanide-doped lanthanum orthovanadate,” Mat. Sc. Eng, B 146, 114–120 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited