OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1576–1585

Multiple excitation of localized surface plasmon to create a 10 nm × 10 nm strong optical spot using an Au nanoparticle array-based ridge waveguide

Sung-Mook Kang, Jin Han, Taeseob Kim, No-Cheol Park, Kyoung-Su Park, Byung-Kwon Min, and Young-Pil Park  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1576-1585 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1096 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a description of a multiple excitation of localized surface plasmons (LSPs) from an Au nanoparticle (NP) array-based ridge waveguide to create a small optical spot size with an extremely strong intensity. Using a numerical finite-difference time-domain method, we find that the optical intensity of the ridge waveguide with an Au NP array is about 700% higher than that of a simple ridge waveguide. Moreover, the spacing between the NPs plays an important role in the multiple excitation of LSPs. The spot size, calculated at FWHM, is 10 nm × 10 nm at a distance of 5 nm from the exit plane.

© 2010 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons
(350.4990) Other areas of optics : Particles

ToC Category:
Optics at Surfaces

Original Manuscript: November 3, 2009
Revised Manuscript: December 11, 2009
Manuscript Accepted: December 26, 2009
Published: January 13, 2010

Sung-Mook Kang, Jin Han, Taeseob Kim, No-Cheol Park, Kyoung-Su Park, Byung-Kwon Min, and Young-Pil Park, "Multiple excitation of localized surface plasmon to create a 10 nm × 10 nm strong optical spot using an Au nanoparticle array-based ridge waveguide," Opt. Express 18, 1576-1585 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003). [CrossRef]
  2. K. Şendur, A. W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004). [CrossRef]
  3. T. McDaniel and W. Challener, “Issues in the design of media for hybrid recording,” Trans. Magn. Soc. Jpn. 2, 316–321 (2002).
  4. J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a Multi Layer Near-Field Recording System: Dual-Layer Recording Results,” Jpn. J. Appl. Phys. 46(No. 6B), 3894–3897 (2007). [CrossRef]
  5. Y. J. Yoon, W. C. Kim, H. Choi, N. C. Park, S. Kang, and Y. P. Park, “Design and Analysis of Replicated Solid Immersion Lens for Large Thickness Tolerance in Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5927–5932 (2008). [CrossRef]
  6. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008). [CrossRef] [PubMed]
  7. K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003). [CrossRef] [PubMed]
  8. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005). [CrossRef]
  9. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008). [CrossRef] [PubMed]
  10. S. Kim, J. Jin, Y.-J. Kim, I. Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [CrossRef] [PubMed]
  11. K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210(3), 294–300 (2003). [CrossRef] [PubMed]
  12. E. X. Jin and X. Xu, “Finite-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004). [CrossRef]
  13. X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28(15), 1320–1322 (2003). [CrossRef] [PubMed]
  14. D. D. Stancil, A. Itagi, T. E. Schlesinger, J. Bain, and T. Rausch, “Device with waveguide defined by dielectric in aperture of cross-track portion of electrical conductor for writing data to a recording medium,” US Patent Application No. 10/256809.
  15. A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003). [CrossRef]
  16. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  17. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004). [CrossRef]
  18. A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30, 368–375 (2005). [CrossRef]
  19. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26(14), 1096–1098 (2001). [CrossRef]
  20. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  21. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science 25 (Springer-Verlag, Berlin, 1995).
  22. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002). [CrossRef]
  23. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]
  24. K. Kunz, and R. Lubbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, FL, 1996) p.11, p.123.
  25. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 2000).
  26. W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical Transducers for Near Field Recording,” Jpn. J. Appl. Phys. 45(No. 8B), 6632–6642 (2006). [CrossRef]
  27. Remcom Inc.: XFDTD 6.5 software (2008).
  28. G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23(4), 377–382 (1981). [CrossRef]
  29. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, FL, 1996).
  30. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003). [CrossRef]
  31. H. Raether, “Surface plasma oscillations and their applications,” Phys. Thin Film 9, 145–261 (1977).
  32. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999). [CrossRef]
  33. J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microsc. 202(1), 122–128 (2001). [CrossRef] [PubMed]
  34. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000). [CrossRef]
  35. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001). [CrossRef]
  36. D. S. Citrin, “Coherent transport of excitons in quantum-dot chains: role of retardation,” Opt. Lett. 20(8), 901–903 (1995). [CrossRef] [PubMed]
  37. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953). [CrossRef]
  38. B. W. van der Meer, G. Coker, and S.-Y. S. Chen, “Resonance Energy Transfer (Wiley,” New York •••, 35 (1994).
  39. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26(14), 1096–1098 (2001). [CrossRef]
  40. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer,1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited