OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1618–1629

Multiple-junction quantum cascade photodetectors for thermophotovoltaic energy conversion

Jian Yin and Roberto Paiella  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 1618-1629 (2010)
http://dx.doi.org/10.1364/OE.18.001618


View Full Text Article

Enhanced HTML    Acrobat PDF (307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of intersubband transitions in quantum cascade structures for thermophotovoltaic energy conversion is investigated numerically. The intrinsic cascading scheme, spectral agility, and design flexibility of these structures make them ideally suited to the development of high efficiency multiple-junction thermophotovoltaic detectors. A specific implementation of this device concept is designed, based on bound-to-continuum intersubband transitions in large-conduction-band-offset In0.7Ga0.3As/AlAs0.8Sb0.2 quantum wells. The device electrical characteristics in the presence of thermal radiation from a blackbody source at 1300 K are calculated, from which a maximum extracted power density of 1.4 W/cm2 is determined. This value compares favorably with the present state-of-the-art in interband thermophotovoltaic energy conversion, indicating that quantum cascade photodetectors may provide a promising approach to improve energy extraction from thermal sources.

© 2010 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Detectors

History
Original Manuscript: December 11, 2009
Revised Manuscript: January 8, 2010
Manuscript Accepted: January 9, 2010
Published: January 13, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Citation
Jian Yin and Roberto Paiella, "Multiple-junction quantum cascade photodetectors for thermophotovoltaic energy conversion," Opt. Express 18, 1618-1629 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1618


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Paiella, ed., Intersubband Transitions in Quantum Structures (McGraw-Hill, New York, 2006).
  2. P. F. Baldasaro, J. E. Raynolds, G. W. Charache, D. M. DePoy, C. T. Ballinger, T. Donovan, and J. M. Borrego, “Thermodynamic analysis of thermophotovoltaic efficiency and power density tradeoffs,” J. Appl. Phys. 89(6), 3319–3327 (2001). [CrossRef]
  3. L. M. Fraas, J. E. Avery, H. X. Huang, and R. U. Martinelli, “Thermophotovoltaic system configurations and spectral control,” Semicond. Sci. Technol. 18(5), S165–S173 (2003). [CrossRef]
  4. K. Emery, “Characterizing thermophotovoltaic cells,” Semicond. Sci. Technol. 18(5), S228–S231 (2003). [CrossRef]
  5. B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51(3), 512–515 (2004). [CrossRef]
  6. R. R. Siergiej, S. Sinharoy, T. Valko, R. J. Wehrer, B. Wernsman, S. D. Link, R. W. Schultz, and R. L. Messham, “InGaAsP/InGaAs tandem TPV device,” AIP Conf. Proc. 738, 480–488 (2004). [CrossRef]
  7. M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. DePoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenki, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron. Dev. 53(12), 2879–2891 (2006). [CrossRef]
  8. L. Bhusal and A. Freundlich, “GaAsN/InAsN superlattice based multijunction thermophotovoltaic devices,” J. Appl. Phys. 102(7), 074907 (2007). [CrossRef]
  9. M. A. Green, Third Generation Photovoltaics (Springer-Verlag, Berlin, 2006).
  10. M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetectors,” Appl. Phys. Lett. 84(4), 475–477 (2004). [CrossRef]
  11. L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, “Quantum cascade photodetector,” Appl. Phys. Lett. 85(14), 2824–2826 (2004). [CrossRef]
  12. C. Koeniguer, G. Dubois, A. Gomez, and V. Berger, “Electronic transport in quantum cascade structures at equilibrium,” Phys. Rev. B 74(23), 235325 (2006). [CrossRef]
  13. F. R. Giorgetta, E. Baumann, D. Hofstetter, C. Manz, Q. Yang, K. Köhler, and M. Graf, “InGaAs/AlAsSb quantum cascade detectors operating in the near infrared,” Appl. Phys. Lett. 91(11), 111115 (2007). [CrossRef]
  14. A. Vardi, G. Bahir, F. Guillot, C. Bougerol, E. Monroy, S. E. Schacham, M. Tchernycheva, and F. H. Julien, “Near infrared quantum cascade detector in GaN/AlGaN/AlN heterostructures,” Appl. Phys. Lett. 92(1), 011112 (2008). [CrossRef]
  15. D. Hofstetter, F. R. Giorgetta, E. Baumann, Q. Yang, C. Manz, and K. Köhler, “Midinfrared quantum cascade detector with a spectrally broad response,” Appl. Phys. Lett. 93(22), 221106 (2008). [CrossRef]
  16. S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ~3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94(3), 031106 (2009). [CrossRef]
  17. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001). [CrossRef]
  18. O. Madelung, ed., Semiconductors – Basic Data, second edition (Springer-Verlag, Berlin, 1996).
  19. J. Y. Andersson and L. Lundqvist, “Near-unity quantum efficiency of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a doubly periodic grating coupler,” Appl. Phys. Lett. 59(7), 857–859 (1991). [CrossRef]
  20. R. Köhler, R. C. Iotti, A. Tredicucci, and F. Rossi, “Design and simulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 79(24), 3920–3922 (2001). [CrossRef]
  21. M. Helm, “The basic physics of intersubband transitions,” in Intersubband Transitions in Quantum Wells: Physics and Device Applications I, H. C. Liu and F. Capasso, eds. (Academic Press, San Diego, 2000).
  22. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics (John Wiley & Sons, Chichester, 1999).
  23. K. J. Franz, W. O. Charles, A. Shen, A. J. Hoffman, M. C. Tamargo, and C. Gmachl, “ZnCdSe/ZnCdMgSe quantum cascade electroluminescence,” Appl. Phys. Lett. 92(12), 121105 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited