OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1704–1713

Control of photon storage time using phase locking

Byoung S. Ham  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1704-1713 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1474 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photon echo storage-time extension protocol is presented by using a phase locking method in a three-level backward propagation scheme, where phase locking serves as a conditional stopper of the rephasing process in conventional two-pulse photon echoes. The backward propagation scheme solves the critical problems of extremely low retrieval efficiency and π rephasing pulse-caused spontaneous emission noise in photon echo based quantum memories. The physics of the storage time extension lies in the imminent population transfer from the excited state to an auxiliary spin state by a phase locking control pulse. We numerically demonstrate that the storage time is lengthened by spin dephasing time.

© 2010 OSA

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(270.1670) Quantum optics : Coherent optical effects
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Quantum Optics

Original Manuscript: December 7, 2009
Revised Manuscript: January 8, 2010
Manuscript Accepted: January 8, 2010
Published: January 14, 2010

Byoung S. Ham, "Control of photon storage time using phase locking," Opt. Express 18, 1704-1713 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008). [CrossRef] [PubMed]
  2. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008). [CrossRef] [PubMed]
  3. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008). [CrossRef] [PubMed]
  4. M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438(7069), 837–841 (2005). [CrossRef] [PubMed]
  5. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005). [CrossRef] [PubMed]
  6. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004). [CrossRef] [PubMed]
  7. B. S. Ham, “Ultralong quantum optical storage using reversible inhomogeneous spin ensembles,” Nat. Photonics 3, 518–522 (2009). [CrossRef]
  8. M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors” Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71(26), 4287–4290 (1993). [CrossRef] [PubMed]
  9. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009). [CrossRef] [PubMed]
  10. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001). [CrossRef] [PubMed]
  11. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98(19), 190503 (2007). [CrossRef] [PubMed]
  12. N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon Echo,” Phys. Rev. Lett. 13(19), 567–570 (1964). [CrossRef]
  13. M. K. Kim and R. Kachru, “Storage and phase conjugation of multiple images using backward-stimulated echoes in Pr3+:LaF3,” Opt. Lett. 12, 593–595 (1987). [CrossRef] [PubMed]
  14. T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7(2), 77–79 (1982). [CrossRef] [PubMed]
  15. M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79(5), 052329 (2009). [CrossRef]
  16. S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87(17), 173601 (2001). [CrossRef] [PubMed]
  17. S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B Quantum Semiclassical Opt. 5(4), S497–S502 (2003). [CrossRef]
  18. M. Nilsson and S. Kroll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles,” Opt. Commun. 247(4-6), 393–403 (2005). [CrossRef]
  19. G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100(2), 023601 (2008). [CrossRef] [PubMed]
  20. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005). This demonstration is another version of ref. (19), where rf pulses are used for the rephasing process. [CrossRef] [PubMed]
  21. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002). [CrossRef] [PubMed]
  22. J. Hahn, and B. S. Ham, “Slow light enhanced photon echoes,” arXiv:0909.4992.
  23. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherence media,” Rev. Mod. Phys. 77(2), 633–673 (2005). [CrossRef]
  24. N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75(3), 032327 (2007). [CrossRef]
  25. D. V. Vasilyev, I. V. Sokolov, and E. S. Polzik, “Quantum memory of images: A quantum hologram,” Phys. Rev. A 77(2), 020302 (2008). [CrossRef]
  26. J. Ruggiero, J.-L. Le Gouet, C. Simon, and T. Chaneliere, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79(5), 053851 (2009). [CrossRef]
  27. I. Novikova, N. B. Philips, and A. V. Gorshkov, “Optimal light storage with full pulse-shape control,” Phys. Rev. A 78(2), 021802 (2008). [CrossRef]
  28. M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics 79–95 (Addison-Wesley, 1974). [PubMed]
  29. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008). [CrossRef] [PubMed]
  30. C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101(23), 233603 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited