OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1722–1733

Full analytical model for obtaining surface plasmon resonance modes

Ergun Simsek  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 1722-1733 (2010)
http://dx.doi.org/10.1364/OE.18.001722


View Full Text Article

Enhanced HTML    Acrobat PDF (593 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work addresses the need for a fully-retarded theoretical model for surface plasmons on metal nanoparticle chains and arrays embedded in a multilayered medium. The proposed method uses dyadic layered medium Green’s functions not only to obtain the electric field created by an oscillating electric dipole but also to modify the polarizability of nanoparticles in a multilayered medium appropriately. Theoretically calculated resonance frequencies show a very good agreement with the experimental results found in the literature. Theoretical results suggest that surface plasmon propagation lengths of 1 μm are possible using silver or gold nanoparticles embedded in a multilayered medium.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 8, 2009
Revised Manuscript: January 4, 2010
Manuscript Accepted: January 11, 2010
Published: January 14, 2010

Citation
Ergun Simsek, "Full Analytical Model for Obtaining Surface Plasmon Resonance Modes of Metal Nanoparticle Structures Embedded in Layered Media," Opt. Express 18, 1722-1733 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1722


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003). [CrossRef]
  2. E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J.Chem. Phys. 120, 357-366 (2004). [CrossRef] [PubMed]
  3. S. L. Zou and G. C. Schatz, "Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields," Chem. Phys. Lett. 403, 62-67 (2005). [CrossRef]
  4. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip au nan-otriangles," Phys. Rev. B 72, 165409 (2005). [CrossRef]
  5. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  6. M. Guillon, "Field enhancement in a chain of optically bound dipoles," Opt. Express 14, 3045-3055 (2006). [CrossRef] [PubMed]
  7. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced raman scattering (sers)," Phys. Rev. Lett. 78, 1667- 1670 (1997). [CrossRef]
  8. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced raman scattering and biophysics," J. Phys. Cond. Matter 14, R597-R624 (2002). [CrossRef]
  9. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced raman scattering," Phys. Rev. B 65, 075419 (2002). [CrossRef]
  10. N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Gold particle interaction in regular arrays probed by surface enhanced raman scat-tering," J. Chem. Phys. 120, 7141-7146 (2004). [CrossRef] [PubMed]
  11. J. Grand, M. L. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, "Role of localized surface plasmons in surface-enhanced raman scattering of shape-controlled metallic particles in regular arrays," Phys. Rev. B 72, 033407 (2005). [CrossRef]
  12. G. Laurent, N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Evidence of multipolar excitations in surface enhanced raman scattering," Phys. Rev. B 71, 045430 (2005). [CrossRef]
  13. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Mo-erner, "Exploring the chemical enhancement for surface-enhanced raman scattering with au bowtie nanoantennas," J. Chem. Phys. 124, 061101 (2006). [CrossRef]
  14. K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, "Wavelength-scanned surface-enhanced raman excitation spectroscopy," Phys. Chem B 110, 3964-3968 (2006). [CrossRef]
  15. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, "Nanoscale probing of adsorbed species by tip-enhanced raman spectroscopy," Phys. Rev. Lett. 92, 096101 (2004). [CrossRef] [PubMed]
  16. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000). [CrossRef]
  17. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  18. K. R. Catchpole and A. Polman, "Plasmonic solar cells," Opt. Express 16, 21793-21800 (2008). [CrossRef] [PubMed]
  19. M . Danckwerts and L . Novotny, "Optical frequency mixing at coupled gold nanoparticles," Phys. Rev. Lett. 98, 026104 (2007). [CrossRef] [PubMed]
  20. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003). [CrossRef]
  21. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of au and ag nanowires," Phys. Rev. B 68, 155427 (2003). [CrossRef]
  22. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The in°uence of size, shape, and dielectric environment," J Phys Chem B 107, 668-677 (2003). [CrossRef]
  23. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, "Localized surface Plasmon resonance spectroscopy of single silver triangular nanoprisms," Nano Lett. 6, 2060 (2006). [CrossRef] [PubMed]
  24. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. V. Duyne, "Nanosphere lithography: Erect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles," J. Phys. Chem. B 105, 2343-2350 (2001). [CrossRef]
  25. W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003). [CrossRef]
  26. C. Noguez, "Surface plasmons on metal nanoparticles: The infuence of shape and physical environment," J. Phys. Chem. C 111, 3806-3819 (2007). [CrossRef]
  27. V. Markel, "Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure," J. Mod. Opt.  40, 2281-2291 (1993). [CrossRef]
  28. S. Maier, P. Kik, and H. Atwater, "Observation of coupled plasmon-polariton modes in au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002). [CrossRef]
  29. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475477 (1997). [CrossRef] [PubMed]
  30. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  31. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002). [CrossRef]
  32. S. Y. Park and D. Stroud, "Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation," Phys. Rev. B 69, 125418 (2004). [CrossRef]
  33. M. I. Stockman, K. Li, and D. J. Bergman, "Self-similar chain of metal nanospheres as efficient nanolens," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies," (Optical Society of America, 2004), p. IFC2.
  34. R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69, 085407 (2004). [CrossRef]
  35. S. Zou and G. C. Schatz, "Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths," Nanotechnology 17, 2813-2820 (2006). [CrossRef]
  36. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, "Resonator mode in chains of silver spheres and its possible application," Phys. Rev. E 72, 066606 (2005). [CrossRef]
  37. W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004). [CrossRef]
  38. A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006). [CrossRef]
  39. A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, "Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides," Phys. Rev. B 76, 201403 (2007). [CrossRef]
  40. K. Crozier, E. Togan, E. Simsek, and T. Yang, "Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains," Opt. Express 15, 17482-17493 (2007). [CrossRef] [PubMed]
  41. E. Simsek, "On the surface plasmon resonance modes of metal nanoparticle chains and arrays," Plasmonics 4, 223-230 (2009). [CrossRef]
  42. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the di®raction limit," Phys. Rev. B 62, R16356-R16359 (2000). [CrossRef]
  43. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the Plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000). [CrossRef] [PubMed]
  44. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003). [CrossRef]
  45. 45. S . Zou and G. C . Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004). [CrossRef] [PubMed]
  46. E. J. Smythe, E. Cubukcu, and F. Capasso, "Optical properties of surface plasmon resonances of coupled metallic nanorods," Opt. Express 15, 7439-7447 (2007). [CrossRef] [PubMed]
  47. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, "Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays," Appl. Phys. Lett. 93, 181108 (2008). [CrossRef]
  48. B. Auguie and W. L. Barnes, "Collective resonances in gold nanoparticle arrays," Phys. Rev. Lett. 101, 143902 (2008). [CrossRef] [PubMed]
  49. T. Yang and K. B. Crozier, "Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface," Opt. Express 16, 8570-8580 (2008). [CrossRef] [PubMed]
  50. T. Yang and K. B. Crozier, "Surface plasmon coupling in periodic metallic nanoparticle structures: a semi-analytical model," Opt. Express 16, 13070-13079 (2008). [CrossRef] [PubMed]
  51. E. Bae, H. Zhang, and E. D. Hirleman, "Application of the discrete dipole approximation for dipoles embedded in film," J. Opt. Soc. Am. A 25, 1728-1736 (2008). [CrossRef]
  52. K. A. Michalski and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part i: Theory," IEEE Microw. Theory Tech. 38, 335 (1990).
  53. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, Piscataway, NJ, 1995).
  54. G. Dural and M. I. Aksun, "Closed form green's functions for general sources and stratified media," IEEE Trans. Microw. Theory Tech. 43, 1545 (1995). [CrossRef]
  55. M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, "Accurate and effcient computation of the Green's tensor for stratified media," Phys. Rev. E 62, 5797-5807 (2000). [CrossRef]
  56. M. Paulus and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green-Ostensor approach," J. Opt. Soc. Am. A 18, 854-861 (2001). [CrossRef]
  57. E. Simsek, Q. H. Liu, and B. Wei, "Singularity subtraction for evaluation of green's functions for multilayer media," IEEE Trans. Microw. Theory Tech.  54, 216-225 (2006). [CrossRef]
  58. A. Sommerfeld, Partial Differential Equations in Physics (Academic Press, New York, 1949).
  59. J. Aizpurua, T. Taubner, F. J. G. de Abajo, M. Brehm, and R. Hillenbrand, "Substrate-enhanced infrared near-field spectroscopy," Opt. Express 16, 1529-1545 (2008). [CrossRef] [PubMed]
  60. A. D. Rakic, A. B . Djuri·sic, J. M . Elazar, and M. L . Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt.  37, -5283 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited