OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 426–438

Standing wave Spectrometer

Vladislav Jovanov, Jordan Ivanchev, and Dietmar Knipp  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 426-438 (2010)
http://dx.doi.org/10.1364/OE.18.000426


View Full Text Article

Enhanced HTML    Acrobat PDF (626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A standing wave Fourier transform spectrometer is realized. The spectrometer consists of an ultra thin and partially transparent photodetector and a tunable mirror. The incident light forms a standing wave in front of the mirror, which is sampled by the ultra thin optical detector. The thickness of the photodetector is significantly smaller than the wavelength of the incident light. The spectral information of the incident light is determined by the Fourier transform of the detector signal. The linear arrangement of the optical detector and the mirror enables the realization of spectrometer arrays and optical cameras with high spectral resolution. For the first time a complete optical model of the standing wave spectrometer is presented and compared with experimental results. The influence of the design of the optical detector on the performance of the spectrometer is discussed.

© 2010 OSA

OCIS Codes
(230.5170) Optical devices : Photodiodes
(300.6190) Spectroscopy : Spectrometers
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:
Spectroscopy

History
Original Manuscript: September 9, 2009
Revised Manuscript: November 23, 2009
Manuscript Accepted: November 24, 2009
Published: January 4, 2010

Citation
Vladislav Jovanov, Jordan Ivanchev, and Dietmar Knipp, "Standing wave Spectrometer," Opt. Express 18, 426-438 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-426


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. F. Wolffenbuttel, “State-of-the-Art in Integrated Optical Microspectrometers,” IEEE Tr, IM, Vol. 53(1), 197 (2004).
  2. P. M. Zavracky, K. L. Denis, H. K. Xie, T. Wester, and P. Kelley, “A micromachined scanning Fabry–Pérot interferometer,” Proc. SPIE (3514), 179–187 (1998).
  3. G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sens. Act. A-Phys. 58(1), 61–66 (1997). [CrossRef]
  4. O. Manzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, “Miniaturized time-scanning Fourier transform spectrometer based on silicon technology,” Opt. Lett. 24(23), 1705–1707 (1999). [CrossRef]
  5. D. A. B. Miller, “Laser Tuners and Wavelength-sensitive Detectors based on absorbers in Standing Waves,” IEEE J. Quantum Electron. 30(3732), (1994). [CrossRef]
  6. M. Sasaki, X. Y. Mi, and K. Hane, “Standing wave detection and interferometer application using a photodiode thinner than optical wavelength,” Applied Physics Letters,Vol. 75(14), 2008–2010 (1999). [CrossRef]
  7. H. L. Kung, S. R. Bhalotra, J. D. Mansell, D. A. B. Miller, and J. S. Harris., “Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector,” IEEE Sel. Top. Quantum Electron. 8(1), 98–105 (2002). [CrossRef]
  8. D. Knipp, H. Stiebig, S. R. Bhalotra, E. Bunte, H. L. Kung, and D. A. B. Miller, “Silicon based Micro-Fourier spectrometer,” IEEE Trans. Electron Dev. 52(3), 419–426 (2005). [CrossRef]
  9. E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007). [CrossRef]
  10. W. Luft, and Y. Tuso, “Hydrogenated amorphous silicon alloy deposition processes”, Marcel Dekker, Inc., 1993.
  11. J. Kauppinen, and J. Partanen, “Fourier Transforms in Spectroscopy”, Wiley-VCH, 2001.
  12. Z. Knittl, “Optics of Thin Films”, New York: Wiley, 1976.
  13. P. G. Herzog, D. Knipp, H. Stiebig, and F. König, “Colorimetrical Characterization of novel multiple-channel sensors for imaging and metrology,” J. Electron. Imaging 8(4), 342–353 (1999). [CrossRef]
  14. O. Kluth, and A. Löffl, S. Wieder, C. Beneking, L. Houben, B. Rech, H. Wagner, S. Waser, J.A. Selvan, H. Keppner, “Texture etched Al-doped ZnO: A new material for enhanced light trapping in thin film solar cells”, Proc. 26th IEEE PVSEC, pp. 715–718 (1997).
  15. “Technology and Applications of Amorphous Silicon”, Springer Series in Material Science, 37. edited by R. A. Street, Berlin, Germany: Springer-Verlag, 2000.
  16. H. Stiebig, H.-J. Büchner, E. Bunte, V. Mandryka, D. Knipp, and G. Jäger, “Standing wave detection by thin transparent n–i–p diodes of amorphous silicon,” Thin Solid Films 427(1-2), 152–156 (2003). [CrossRef]
  17. H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, “Interferometric Sensors for Spectral Imaging”, Sens. Act. A: Phys. 120, 110–114 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited