OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 479–499

Stochastic inversion of ocean color data using the cross-entropy method

Mhd. Suhyb Salama and Fang Shen  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 479-499 (2010)
http://dx.doi.org/10.1364/OE.18.000479


View Full Text Article

Enhanced HTML    Acrobat PDF (949 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Improving the inversion of ocean color data is an ever continuing effort to increase the accuracy of derived inherent optical properties. In this paper we present a stochastic inversion algorithm to derive inherent optical properties from ocean color, ship and space borne data. The inversion algorithm is based on the cross-entropy method where sets of inherent optical properties are generated and converged to the optimal set using iterative process. The algorithm is validated against four data sets: simulated, noisy simulated in-situ measured and satellite match-up data sets. Statistical analysis of validation results is based on model-II regression using five goodness-of-fit indicators; only R2 and root mean square of error (RMSE) are mentioned hereafter. Accurate values of total absorption coefficient are derived with R2 > 0.91 and RMSE, of log transformed data, less than 0.55. Reliable values of the total backscattering coefficient are also obtained with R2 > 0.7 (after removing outliers) and RMSE < 0.37. The developed algorithm has the ability to derive reliable results from noisy data with R2 above 0.96 for the total absorption and above 0.84 for the backscattering coefficients.The algorithm is self contained and easy to implement and modify to derive the variability of chlorophyll-a absorption that may correspond to different phytoplankton species. It gives consistently accurate results and is therefore worth considering for ocean color global products.

© 2010 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7340) Atmospheric and oceanic optics : Water
(100.3190) Image processing : Inverse problems

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 24, 2009
Revised Manuscript: November 27, 2009
Manuscript Accepted: November 27, 2009
Published: January 4, 2010

Citation
Mhd. Suhyb Salama and Fang Shen, "Stochastic inversion of ocean color data using the cross-entropy method," Opt. Express 18, 479-499 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-479


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Zaneveld, "New developments of the theory of radiative transfer in the ocean," in "Optical Aspects of Oceanography," N. Jerlov, ed. (Academic Press, London, 1973), pp. 121-134.
  2. S. Duntley, "Light in the sea," J. Opt. Soc. Am. 53, 214-233 (1963). [CrossRef]
  3. H. Gordon, O. Brown, and M. Jacobs, "Computed relationship between the inherent and apparent optical properties of a flat homogeneous ocean," Appl. Opt. 14, 417-427 (1975). [CrossRef] [PubMed]
  4. A. Morel and L. Prieur, "Analysis of variation in ocean color," Limnology and Oceanography 22, 709-722 (1977). [CrossRef]
  5. R. Walker, Marine Light Field Statistics, Wiley serie on pure and Appl. Opt. (John Wiley & Sons, INC., NW, 1994).
  6. J. Kirk, The relationship between the inherent and apparent optical properties of surface waters and its dependence on the shape of the volume scattering function, (Oxford University Press, 1994), p. 283.
  7. H. Gordon, O. Brown, R. Evans, J. Brown, R. Smith, K. Baker, and D. Clark, "A semianalytical radiance model of ocean color," J. Geophys. Res. 93, 10909-10924 (1988). [CrossRef]
  8. S. Garver and D. Siegel, "Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation I. Time series from the sargasso sea," J. Geophys. Res. 102, 18607-18625 (1997). [CrossRef]
  9. F. E. Hoge and P. E. Lyon, "Satellite retrieval of inherent optical properties by linear matrix inversion of ocean radiance models: An analysis of model and radiance measurement errors," J. Geophys. Res. 101, 16631-16648 (1996). [CrossRef]
  10. Z. Lee, K. Carder, C. Mobley, R. Steward, and J. Patch, "Hyperspectral remote sensing for shallow waters. 1. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998). [CrossRef]
  11. S. Maritorena, D. Siegel, and A. Peterson, "Optimization of a semianalytical ocean color model for global-scale applications," Appl. Opt. 41, 2705-2714 (2002). [CrossRef] [PubMed]
  12. Z. Lee, K. Carder, and R. Arnone, "Deriving inherent optical properties from water color: A multiband quasianalytical algorithm for optically deep waters," Appl. Opt. 41, 5755-5772 (2002). [CrossRef] [PubMed]
  13. H. Gordon, "Inverse methods in hydrologic optics," Oceanologia 44, 9-58 (2002).
  14. Z. Lee, K. Carder, C. Mobley, R. Steward, and J. Patch, "Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization," Appl. Opt. 38, 3831-3843 (1999). [CrossRef]
  15. A. Albert and P. Gege, "Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties," Appl. Opt. 45, 2331-2343 (2006). [CrossRef] [PubMed]
  16. M. S. Salama, A. Dekker, Z. Su, C. Mannaerts, and W. Verhoef, "Deriving inherent optical properties and associated inversion-uncertainties in the Dutch lakes," Hydrology and Earth System Sciences 13, 1113-1121 (2009). [CrossRef]
  17. H. Zhan, Z. Lee, P. Shi, C. Chen, and K. Carder, "Retrieval of water optical properties for optically deep waters using genetic algorithms," IEEE Trans. Geosci. Remote Sens. 41, 1123-1128 (2003). [CrossRef]
  18. M. Chami and D. Robilliard, "Inversion of oceanic constituents in case i and ii waters with genetic programming algorithms," Appl. Opt. 41, 6260-6275 (2002). [CrossRef] [PubMed]
  19. P. Kempeneers, S. Sterckx, W. Debruyn, S. De Backer, P. Scheunders, Y. Park, and K. Ruddick, "Retrieval of oceanic constituents from ocean color using simulated annealing," in "Geoscience and Remote Sensing Symposium," Vol. 8 of IGARSS (IEEE International, 2005), vol. 8 of IGARSS, pp. 5651-5654.
  20. W. Slade, H. Ressom, M. Musavi, and R. Miller, "Inversion of ocean color observations using particle swarm optimization," IEEE Trans. Geosci. Remote Sens. 42, 1915-1923 (2004). [CrossRef]
  21. R. Souto, H. Campos Velho, S. Stephany, and M. Kampel, "Chlorophyll concentration profiles from in situ radiances by ant colony optimization," in "4th AIP International Conference and the 1st Congress of the IPIA," Vol. 124 of Journal of Physics (2008), pp. 1-12.
  22. M.S. Salama and A. Stein, "Error decomposition and estimation of inherent optical properties," Appl. Opt. 48, 4947-4962 (2009). [CrossRef] [PubMed]
  23. G. Dueck and T. Scheur, "Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing," Journal of Computational Physics 90, 161-175 (1990). [CrossRef]
  24. W. Gong, Y. Ho, and W. Zhai, "Stochastic comparison algorithm for discrete optimization with estimation," in "Proceedings of the 31st IEEE Conference," Vol. 1 of Decision and Controle (1992), pp. 795-800.
  25. F. Glover, "Tabu search: A tutorial," Interfaces 20, 74-94 (1990). [CrossRef]
  26. R. Rubinstein, "The cross-entropy method for combinatorial and continuous optimization," Methodology and Computing in Applied Probability 2, 127-190 (1999). [CrossRef]
  27. R. Rubinstein and D. Kroese, The Cross-Entropy Method: A unified approach to combinatorial optimization, Monte-Carlo simulation, and machine learning, Information Science and Statistics (Springer, New York, 2004). [PubMed]
  28. Z. Lee, "Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications," Tech. Rep. 5, International Ocean-Colour Coordinating Group (2006).
  29. R. Pope and E. Fry, "Absorption spectrum (380-700nm) of pure water: II, Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997). [CrossRef]
  30. C. Mobley, Light and water radiative transfer in natural waters (Academic Press, 1994).
  31. A. Bricaud, A. Morel, and L. Prieur, "Absorption by dissolved organic-matter of the sea (yellow substance) in the UV and visible domains," Limnology and Oceanography 26, 43-53 (1981). [CrossRef]
  32. O. Kopelevich, "Small-parameter model of optical properties of sea waters," in "Ocean Optics," Vol. 1 Physical Ocean Optics, A. Monin, ed. (Nauka, 1983), pp. 208-234.
  33. T. Petzold, "Volume scattering functions for selected ocean waters," in "Light in the Sea," Vol. 12, J. Tyler, ed. (Dowden, Hutchinson and Ross, Stroudsburg, Pa. USA, 1977), pp. 150-174.
  34. V. Singh, Entropy-based parameter estimation in Hydrology, Vol. 30 of Water Science and Technology Library (Kluwer Academic Publishers, Dordrecht, 1998).
  35. C. Shannon, "A mathematical theory of communication," Bell Syst. Tech. J. 27, 379-423, 623-656 (1948).
  36. S. Kullback and R. Leibler, "On information and sufficiency," The Annals of Mathematical Statistics 22, 79-86 (1951). [CrossRef]
  37. D. Kroese, S. Porotsky, and R. Rubinstein, "The cross-entropy method for continuous multi-extremal optimization," Methodology and Computing in Applied Probability 8, 383-407 (2006). [CrossRef]
  38. R. Rubinstein and D. Kroese, Simulation and the Monte Carlo Method, Wiley Series in Probability and Statistics (2008), 2nd Ed.
  39. R. Srinivasan, Importance sampling: Applications in communications and detection (Springer-Verlag, Berlin, 2002).
  40. T. De Boer, D. Kroese, S. Mannor, and R. Rubinstein, "A tutorial on the cross-entropy method," Annals of Operations Research 134, 19-67 (2005). [CrossRef]
  41. W. Gregg, and K. Carder, "A simple spectral solar irradiance model for cloudless maritime atmospheres," Limnology and Oceanography 35, 1657-1675 (1990). [CrossRef]
  42. J. Werdell and S. Bailey, "An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation," Remote Sensing of Environment 98, 122-140 (2005). [CrossRef]
  43. S. Kirkpatrick, C. Gelatt, and M. Vecchi, "Optimization by simulated annealing," Science 220, 671-680 (1983). [CrossRef] [PubMed]
  44. E. Laws, Mathematical Methods for Oceanographers: An introduction (John Wiley and Sons, New York, 1997).
  45. R. Doerffer, "Analysis of the signal/noise and the water leaving radiance finnish lakes," Tech. Rep., Brockmann Consult (2008).
  46. H. Neckel and D. Labs, "Improved data of solar spectral irradiance from 0.33 to 1.25 mm," Solar Physics 74, 231-249 (1981). [CrossRef]
  47. D. Doxaran, M. Babin, and E. Leymarie, "Near-infrared light scattering by particles in coastal waters," Opt. Express 15, 12834-12849 (2007). [CrossRef] [PubMed]
  48. J. Werdell, B. Franz, S. Bailey, L. Harding, and G. Feldman, "Approach for the long-term spatial and temporal evaluation of ocean color satellite data products in a coastal environment," in "Proceedings of SPIE, the International Society for Optical Engineering," Vol. 6680 of Coastal ocean remote sensing, (2007), pp. 66800G.1-66800G.12.
  49. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters II. Bidirectional aspects," Appl. Opt. 32, 6864-6879 (1993). [CrossRef] [PubMed]
  50. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters.3. Implication of bidirectionality for the remote sensing problem," Appl. Opt. 35, 4850-4862 (1996). [CrossRef] [PubMed]
  51. A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of naturnal phytoplankton: Analysis and parameterization," J. Geophys. Res. 100, 13,321-13,332 (1995). [CrossRef]
  52. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, "Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models," J. Geophys. Res. 103 (1998). [CrossRef]
  53. K. Carder, F. Chen, Z. Lee, S. Hawes, and D. Kamykowski, "Semianalytical moderate-resolution imaging spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperature," J. Geophys. Res. 104, 5403-5421. (1999). [CrossRef]
  54. A. Whitmire, E. Boss, T. Cowls, and W. Pegau, "Spectral variability of particulate backscattering ratio," Opt. Express 15, 7019-7031 (2007). [CrossRef] [PubMed]
  55. D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, "Spectral variations of light scattering by marine particles in coastal waters, from visible to near infrared," Limnology and Oceanography 54, 1257-1271 (2009). [CrossRef]
  56. M. Sydor, R. Gould, R. Arnone, V. Haltrin, and W. Goode, "Uniqueness in remote sensing of the inherent optical properties of ocean water," Appl. Opt. 43, 2156-2162 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited