OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 507–512

Core-cladding mode coupling and recoupling in photonic crystal fiber for enhanced overlap of evanescent field using long-period gratings

Zonghu He, Yinian Zhu, Jiří Kaňka, and Henry Du  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 507-512 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (442 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Excitation of cladding modes has been achieved using long-period (LPGs) inscribed in an endlessly single-mode photonic crystal fiber (ESM PCF) by CO2 laser irradiation. Core-cladding mode coupling and recoupling has resulted in marked improvement in the evanescent field overlap throughout the cladding air channels in the PCF-LPG, compared to the PCF alone. Our numerical simulation has shown that design optimization of the PCF-LPG configuration can lead to a field power overlap as high as 22% with a confinement loss of less than 1 dB/m in the cladding mode.

© 2010 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

Original Manuscript: September 28, 2009
Revised Manuscript: November 6, 2009
Manuscript Accepted: November 6, 2009
Published: January 4, 2010

Zonghu He, Yinian Zhu, Jiří Kaňka, and Henry Du, "Core-cladding mode coupling and recoupling in photonic crystal fiber for enhanced overlap of evanescent field using long-period gratings," Opt. Express 18, 507-512 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  2. Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1434–1436 (2003). [CrossRef]
  3. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004). [CrossRef] [PubMed]
  4. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001). [CrossRef]
  5. J. M. Fini, “Microstructure fibers for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004). [CrossRef]
  6. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996). [CrossRef]
  7. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24(21), 1460–1462 (1999). [CrossRef]
  8. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, “Bloch method for the analysis of modes in microstructured optical fibers,” Opt. Express 12(8), 1769–1774 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1769 . [CrossRef] [PubMed]
  9. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, “Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves,” Opt. Lett. 25(20), 1499–1501 (2000). [CrossRef]
  10. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005). [CrossRef]
  11. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-18-8232 . [CrossRef] [PubMed]
  12. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008). [CrossRef] [PubMed]
  13. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310–324 (2008). [CrossRef]
  14. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997). [CrossRef] [PubMed]
  15. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997). [CrossRef]
  16. H. Jeong and K. Oh, “Theoretical analysis of cladding-mode waveguide dispersion and its effects on the spectra of long-period fiber grating,” J. Lightwave Technol. 21(8), 1838–1845 (2003). [CrossRef]
  17. Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008). [CrossRef]
  18. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence behavior of the Nelder-Mead simplex algorithm in low dimensions,” SIAM (Soc. Ind. Appl. Math) 9,112–147 (1998).
  19. R. Guobin, W. Zhi, L. Shuqin, and J. Shuisheng, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11(11), 1310–1321 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-11-1310 . [CrossRef] [PubMed]
  20. T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors,” Opt. Commun. 281(20), 5092–5096 (2008). [CrossRef]
  21. Y. Zhu, R. T. Bise, J. Kaňka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008). [CrossRef]
  22. X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited