OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 513–522

Remote sensing image registration approach based on a retrofitted SIFT algorithm and Lissajous-curve trajectories

Zhi-li Song, Sheng Li, and Thomas F. George  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 513-522 (2010)
http://dx.doi.org/10.1364/OE.18.000513


View Full Text Article

Enhanced HTML    Acrobat PDF (614 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Through retrofitting the descriptor of a scale-invariant feature transform (SIFT) and developing a new similarity measure function based on trajectories generated from Lissajous curves, a new remote sensing image registration approach is constructed, which is more robust and accurate than prior approaches. In complex cases where the correct rate of feature matching is below 20%, the retrofitted SIFT descriptor improves the correct rate to nearly 100%. Mostly, the similarity measure function makes it possible to quantitatively analyze the temporary change of the same geographic position.

© 2010 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.5010) Image processing : Pattern recognition
(100.3008) Image processing : Image recognition, algorithms and filters

ToC Category:
Image Processing

History
Original Manuscript: September 29, 2009
Revised Manuscript: November 2, 2009
Manuscript Accepted: November 16, 2009
Published: January 4, 2010

Citation
Zhi-li Song, Sheng Li, and Thomas F. George, "Remote sensing image registration approach based on a retrofitted SIFT algorithm and Lissajous-curve trajectories," Opt. Express 18, 513-522 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-513


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Wade and F. Fitzke, “A fast, robust pattern recognition asystem for low light level image registration and its application to retinal imaging,” Opt. Express 3(5), 190–197 (1998). [CrossRef] [PubMed]
  2. H. Chen, M. K. Arora, and P. K. Varshney, “Mutual information-based image registration for remote sensing data,” Int. J. Remote Sens. 24(18), 3701–3706 (2003). [CrossRef]
  3. Z. Li, Z. Bao, H. Li, and G. Liao, “Image autocoregistration and InSAR interferogram estimation using joint subspace projection,” IEEE Trans. Geosci. Rem. Sens. 44(2), 288–297 (2006). [CrossRef]
  4. J. Orchard, “Efficient least squares multimodal registration with a globally exhaustive alignment search,” IEEE Trans. Image Process. 16(10), 2526–2534 (2007). [CrossRef] [PubMed]
  5. Z. Cao, Y. Zheng, Y. Wang, and R. Yan, “An algorithm for object function optimization in mutual information-based image registration,” Proceedings of the 2008 Congress on Image and Signal Processing, 4, 426–430 (2008).
  6. G. Shao, F. Yao, and M. Malkani, “Aerial image registration based on joint feature-spatial spaces, curve and template matching,” in IEEE International Conference on Information and Automation (Hunan, China, 2008), pages 863–868.
  7. A. Wong and J. Orchard, “Efficient FFT-accelerated approach to invariant optical-LIDAR registration,” IEEE Trans. Geosci. Rem. Sens. 463917–3925 (2008). [CrossRef]
  8. I. Zavorin and J. Le Moigne, “Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery,” IEEE Trans. Image Process. 14(6), 770–782 (2005). [CrossRef] [PubMed]
  9. J. G. Liu and H. Yan, “Phase correlation pixel-to-pixel image co-registration based on optical flow and median shift propagation,” Int. J. Remote Sens. 29(20), 5943–5956 (2008). [CrossRef]
  10. G. Hong and Y. Zhang, “Wavelet-based image registration technique for high-resolution remote sensing images,” Comput. Geosci. 34(12), 1708–1720 (2008). [CrossRef]
  11. S. Guyot, M. Anastasiadou, E. Deléchelle, and A. De Martino, “Registration scheme suitable to Mueller matrix imaging for biomedical applications,” Opt. Express 15(12), 7393–7400 (2007). [CrossRef] [PubMed]
  12. B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput. 21(11), 977–1000 (2003). [CrossRef]
  13. A. Rajwade, A. Banerjee, and A. Rangarajan, “Probability density estimation using isocontours and isosurfaces: applications to information-theoretic image registration,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 475–491 (2009). [CrossRef] [PubMed]
  14. D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004). [CrossRef]
  15. K. Mikolajczyk and C. Schmid, “Scale and affine invariant interest point detectors,” Int. J. Comput. Vis. 60(1), 63–86 (2004). [CrossRef]
  16. T. Tuytelaars and L. Van Gool, “Matching widely separated views based on affinely invariant neighborhoods,” Int. J. Comput. Vis. 59(1), 61–85 (2004). [CrossRef]
  17. F. P. Nava, and A. P. Nava, “A probabilistic generative model for unsupervised invariant change detection in remote sensing images,” in IEEE International Geoscience and Remote Sensing Symposium (Barcelona, 2007), pages 2362–2365.
  18. S. Jiao, C. Wu, R. W. Knighton, G. Gregori, and C. A. Puliafito, “Registration of high-density cross sectional images to the fundus image in spectral-domain ophthalmic optical coherence tomography,” Opt. Express 14(8), 3368–3376 (2006). [CrossRef] [PubMed]
  19. F. Eugenio, F. Marques, and J. Marcello, A contour-based approach to automatic and accurate registration of multitemporal and multisensor satellite imagery,” in IEEE International Geoscience and Remote Sensing Symposium, Volume 6 (Toronto, 2002), pages 3390–3392.
  20. N. Netanyahu, J. Le Moigne, and J. Masek, “Georegistration of Landsat data via robust matching of multiresolution features,” IEEE Trans. Geosci. Rem. Sens. 42(7), 1586–1600 (2004). [CrossRef]
  21. A. Wong and D. A. Clausi, “ARRSI: Automatic registration of remote-sensing images,” IEEE Trans. Geosci. Rem. Sens. 45(5), 1483–1493 (2007). [CrossRef]
  22. C. Stewart, “Robust parameter estimation in computer vision,” SIAM Rev. 41(3), 513–537 (1999). [CrossRef]
  23. M. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM 24(6), 381–395 (1981). [CrossRef]
  24. N. Alajlan, I. El Rube, M. S. Kamel, and G. Freeman, “Shape retrieval using triangle-area representation and dynamic space warping,” Pattern Recognit. 40(7), 1911–1920 (2007). [CrossRef]
  25. N. Kyriakoulis, A. Gasteratos, and S. G. Mouroutsos, “Fuzzy vergence control for an active binocular vision system,” in 7th International Conference on Cybernetic Intelligent Systems (London, 2008), pages 1–5.
  26. A. Rajwade, A. Banerjee, and A. Rangarajan, “Probability density estimation using isocontours and isosurfaces: applications to information-theoretic image registration,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 475–491 (2009). [CrossRef] [PubMed]
  27. http://bigwww.epfl.ch/thevenaz/turboreg/ .
  28. http://www.mathworks.com/ .
  29. http://vision.ece.ucsb.edu/registration/demo/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited