OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 591–597

Widely tunable erbium-doped fiber laser based on multimode interference effect

A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. LiKamWa  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 591-597 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (274 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A widely tunable erbium-doped all-fiber laser has been demonstrated. The tunable mechanism is based on a novel tunable filter using multimode interference effects (MMI). The tunable MMI filter was applied to fabricate a tunable erbium-doped fiber laser via a standard ring cavity. A tuning range of 60 nm was obtained, ranging from 1549 nm to 1609 nm, with a signal to noise ratio of 40 dB. The tunable MMI filter mechanism is very simple and inexpensive, but also quite efficient as a wavelength tunable filter.

© 2010 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 2, 2009
Revised Manuscript: December 10, 2009
Manuscript Accepted: December 11, 2009
Published: January 4, 2010

A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. LiKamWa, "Widely tunable erbium-doped fiber laser based on multimode interference effect," Opt. Express 18, 591-597 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Chen, F. Babin, M. Leblanc, G. He, and G. W. Schinn, “70-nm tunable single-longitudinal mode erbium-doped fiber laser,” Proc. SPIE 4833, 956 (2003). [CrossRef]
  2. L. Xia, P. Shum, Y. X. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18(20), 2162–2164 (2006). [CrossRef]
  3. C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratgin over 90nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003). [CrossRef]
  4. M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibser, “Fiber Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003). [CrossRef]
  5. Z. Zhang, J. Wu, K. Xu, X. Hong, and J. Lin, “Tunable multiwavelength SOA fiber laser with ultra-narrow wavelength spacing based on nonlinear polarization rotation,” Opt. Express 17(19), 17200–17205 (2009). [CrossRef] [PubMed]
  6. M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 mu m widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993). [CrossRef]
  7. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995). [CrossRef]
  8. L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992). [CrossRef]
  9. D. A. May-Arrioja, P. LiKamWa,, J. J. Sanchez-Mondragon, R. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18(10), 3241–3246 (2007). [CrossRef]
  10. M. P. Earnshaw and D. W. E. Allsopp, “Semiconductor space switches based on multimode interference couplers,” J. Lightwave Technol. 20(4), 643–650 (2002). [CrossRef]
  11. D. A. May-Arrioja, N. Bickel, and P. LiKamWa, “Robust 2x2 multimode interference optical switch,” Opt. Quantum Electron. 38(7), 557–566 (2006). [CrossRef]
  12. A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003). [CrossRef]
  13. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006). [CrossRef] [PubMed]
  14. X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33(9), 908–910 (2008). [CrossRef] [PubMed]
  15. R. Selvas, I. Torres-Gomez, A. Martinez-Rios, J. Alvarez-Chavez, D. May-Arrioja, P. Likamwa, A. Mehta, and E. Johnson, “Wavelength tuning of fiber lasers using multimode interference effects,” Opt. Express 13(23), 9439–9445 (2005). [CrossRef] [PubMed]
  16. G. Anzueto-Sánchez, A. Martínez-Ríos, D. A. May-Arrioja, I. Torres-Gómez, R. Selvas-Aguilar, and J. Alvárez-Chávez, “Enhanced tuning mechanism in fiber laser based on multimode interferente effects,” Electron. Lett. 42(23), 1337–1338 (2006). [CrossRef]
  17. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22(2), 469–477 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited