OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 598–623

Trapping light in plasmonic waveguides

Junghyun Park, Kyoung-Youm Kim, Il-Min Lee, Hyunmin Na, Seung-Yeol Lee, and Byoungho Lee  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 598-623 (2010)
http://dx.doi.org/10.1364/OE.18.000598


View Full Text Article

Enhanced HTML    Acrobat PDF (665 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present comprehensive case studies on trapping of light in plasmonic waveguides, including the metal-insulator-metal (MIM) and insulator-metal-insulator (IMI) waveguides. Due to the geometrical symmetry, the guided modes are classified into the anti-symmetric and symmetric modes. For the lossless case, where the relative electric permittivity of metal (εm ) and dielectric (εd ) are purely real, we define ρ as ρ = -εm /εd . It is shown that trapping of light occurs in the following cases: the anti-symmetric mode in the MIM waveguide with 1 < ρ < 1.28, the symmetric mode in the MIM waveguide with ρ ≪ 1, and the symmetric mode in the IMI waveguide with ρ < 1. The physical interpretation reveals that these conditions are closely connected with the field distributions in the core and the cladding. Various mode properties such as the number of supported modes and the core width for the mode cut off are also presented.

© 2010 Optical Society of America

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 2, 2009
Revised Manuscript: December 17, 2009
Manuscript Accepted: December 20, 2009
Published: January 4, 2010

Citation
Junghyun Park, Kyoung-Youm Kim, Il-Min Lee, Hyunmin Na, Seung-Yeol Lee, and Byoungho Lee, "Trapping light in plasmonic waveguides," Opt. Express 18, 598-623 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-598


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. F. Krauss, "Why do we need slow light?," Nature Photon. 2, 448-450 (2008). [CrossRef]
  2. L. Thevenaz, "Slow and fast light in optical fibres," Nature Photon. 2, 474-481 (2008). [CrossRef]
  3. J. E. Heebner, R. W. Boyd, and Q. H. Park, "Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide," Phys. Rev. E 65, 036619 (2002). [CrossRef]
  4. D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultracompact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008). [CrossRef] [PubMed]
  5. M. Notomi and H. Taniyama, "On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning," Opt. Express 16, 18657-18666 (2008). [CrossRef]
  6. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, "Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning," Phys. Rev. Lett. 102, 043907 (2009). [CrossRef] [PubMed]
  7. T. Baba and D. Mori, "Slow light engineering in photonic crystals," J. Phys. D 40, 2659-2665 (2007). [CrossRef]
  8. T. Kawasaki, D. Mori, and T. Baba, "Experimental observation of slow light in photonic crystal coupled waveguides," Opt. Express 15, 10274-10281 (2007). [CrossRef] [PubMed]
  9. D. Mori, S. Kubo, H. Sasaki, and T. Baba, "Experimental demonstration of wideband dispersion compensated slow light by a chirped photonic crystal directional coupler," Opt. Express 15, 5264-5270 (2007). [CrossRef] [PubMed]
  10. T. Baba, "Slow light in photonic crystals," Nature Photon. 2, 465-473 (2008). [CrossRef]
  11. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "'Trapped rainbow' storage of light in metamaterials," Nature 450, 397-401 (2007). [CrossRef] [PubMed]
  12. K. L. Tsakmakidis, C. Hermann, A. Klaedtke, C. Jamois, and O. Hess, "Surface plasmon polaritons in generalized slab heterostructures with negative permittivity and permeability," Phys. Rev. B 73, 085104 (2006). [CrossRef]
  13. Z. Fu, Q. Q. Gan, Y. J. J. Ding, and F. J. Bartoli, "From waveguiding to spatial localization of THz waves within a plasmonic metallic grating," IEEE J. Sel. Top. Quantum Electron. 14, 486-490 (2008). [CrossRef]
  14. Q. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Phys. Rev. Lett. 101, 169903 (2008). [CrossRef]
  15. Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, ""Rainbow" trapping and releasing at telecommunication wavelengths," Phys. Rev. Lett. 102, 056801 (2009). [CrossRef] [PubMed]
  16. K. Y. Kim, "Tunneling-induced temporary light trapping in negative-index-clad slab waveguide," Jpn. J. Appl. Phys. 47, 4843-4845 (2008). [CrossRef]
  17. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2007). [CrossRef]
  18. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 455, 376-U332 (2008). [CrossRef] [PubMed]
  19. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science 321, 930 (2008). [CrossRef] [PubMed]
  20. B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric-constant," Phys. Rev. B 44, 13556-13572 (1991). [CrossRef]
  21. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chipscale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006). [CrossRef]
  22. J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, "Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries," Opt. Express 16, 19001-19017 (2008). [CrossRef]
  23. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005). [CrossRef]
  24. H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science 316, 430-432 (2007). [CrossRef] [PubMed]
  25. J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006). [CrossRef] [PubMed]
  26. J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express 16, 413-425 (2008). [CrossRef] [PubMed]
  27. J. Park, H. Kim, I.-M. Lee, S. Kim, J. Jung, and B. Lee, "Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity," Opt. Express 16, 16903-16915 (2008). [CrossRef] [PubMed]
  28. J. Park and B. Lee, "An approximate formula of the effective refractive index of the metal-insulator-metal surface plasmon polariton waveguide in the infrared region," Jpn. J. Appl. Phys. 47, 8449-8451 (2008). [CrossRef]
  29. E. Feigenbaum and M. Orenstein, "Backward propagating slow light in inverted plasmonic taper," Opt. Express 17, 2465-2469 (2009). [CrossRef] [PubMed]
  30. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear plasmonic slot waveguides," Opt. Express 16, 21209-21214 (2008). [CrossRef] [PubMed]
  31. E. Feigenbaum, N. Kaminski, and M. Orenstein, "Negative group velocity: Is it a backward wave or fast light?," arXiv:0807.4915 (2008).
  32. F. Kusunoki, T. Yotsuya, and J. Takahara, "Confinement and guiding of two-dimensional optical waves by low-refractive-index cores," Opt. Express 14, 5651-5656 (2006). [CrossRef] [PubMed]
  33. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal-films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  34. J. Takahara and T. Kobayashi, "Low-dimensional optical waves and nano-optical circuits," Optics and Photonics News 6, 54-59 (2004). [CrossRef]
  35. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  36. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  37. E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45-57 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited