OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 639–644

Intense near-infrared emission from ZnO-LiYbO2 hybrid phosphors through efficient energy transfer from ZnO to Yb3+

Song Ye, Nan Jiang, Feng He, Xiaofeng Liu, Bin Zhu, Yu Teng, and Jian Rong Qiu  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 639-644 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (217 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ZnO-LiYbO2 hybrid phosphors were sintered by the solid-state reaction method, in which the intense near-infrared emission around 1000 nm due to Yb3+ 2F5/22F7/2 transition was obtained due to the efficient energy transfer from ZnO to Yb3+ ions. The growth of the LiYbO2 crystal and the formation of the diffusion layer between LiYbO2 and ZnO were confirmed by XRD, SEM and EDX studies. The high efficient energy transfer is benefited from the inter-diffusion of Li+, Yb3+ and Zn2+ in the diffusion region. The spectroscopy results clearly indicated that the ZnO-LiYbO2 hybrid phosphors can harvest the energy from near-UV photons in a broad wavelength region and effectively convert them into Yb3+ near-infrared emission.

© 2010 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:

Original Manuscript: November 11, 2009
Revised Manuscript: December 16, 2009
Manuscript Accepted: December 16, 2009
Published: January 4, 2010

Song Ye, Nan Jiang, Feng He, Xiaofeng Liu, Bin Zhu, Yu Teng, and Jian Rong Qiu, "Intense near-infrared emission from ZnO-LiYbO2 hybrid phosphors through efficient energy transfer from ZnO to Yb3+," Opt. Express 18, 639-644 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ishizumi and Y. Kanemitsu, “Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method,” Appl. Phys. Lett. 86(25), 253106 (2005). [CrossRef]
  2. X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible upconversion perperties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004). [CrossRef]
  3. J. C. Ronfard-Haret and J. Kossanyi, “Electro- and photoluminescence of the Tm3+-and Li+- doped ZnO ceramics. Influence of the sintering temperature,” Chem. Phys. 241(3), 339–349 (1999). [CrossRef]
  4. S. Bachir, K. Azuma, J. Kossanyi, P. Valat, and J. C. Ronfard-Haret, “Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare-earth ions into zinc oxide,” J. Lumin. 75(1), 35–49 (1997). [CrossRef]
  5. Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, Y. L. Song, and C. H. Wang, “Enhanced up converted photoluminescence in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ ions,” Opt. Commun. 281(21), 5448–5452 (2008). [CrossRef]
  6. F. Gu, S. F. Wang, M. K. Lv, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure Evaluation and Highly Enhanced Luminescence of Dy 3+ -Doped ZnO Nanocrystals by Li + Doping via Combustion Method, ” Langmuir 20(9), 3528–3531 (2004). [CrossRef]
  7. Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 µm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005). [CrossRef]
  8. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073 (2009). [CrossRef]
  9. S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008). [CrossRef]
  10. S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008). [CrossRef] [PubMed]
  11. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007). [CrossRef]
  12. Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002). [CrossRef]
  13. A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation,” J. Phys. Chem. B 104(8), 1715–1723 (2000). [CrossRef]
  14. A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “Identification of the transifition responsible for the visible emission in ZnO using quantum size effects,” J. Lumin. 90(3-4), 123–128 (2000). [CrossRef]
  15. Y. X. Liu, Y. C. Liu, C. L. Shao, and R. Mu, “Excitonic properties of ZnO nanocrystalline films prepared by oxidation of zinc-implanted silica,” J. Phys. D Appl. Phys. 37(21), 3025–3029 (2004). [CrossRef]
  16. S. Ye, N. Jiang, J. R. Qiu, J. Appl. Phys. to be submitted.
  17. W. Y. Jia, K. Monge, and F. Fernandez, “Energy transfer from the host to Eu3+ in ZnO,” Opt. Mater. 23(1-2), 27–32 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited