OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 656–661

Adaptive optics for direct laser writing with plasma emission aberration sensing

Alexander Jesacher, Graham D. Marshall, Tony Wilson, and Martin J. Booth  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 656-661 (2010)
http://dx.doi.org/10.1364/OE.18.000656


View Full Text Article

Enhanced HTML    Acrobat PDF (360 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Aberrations affect the focal spot quality in direct laser write applications when focusing through a refractive index mismatch. Closed loop adaptive optics can correct these aberrations if a suitable feedback signal can be found. Focusing an ultrafast laser beam into transparent dielectric material can lead to plasma formation in the focal region. We report using the supercontinuum emitted by such a plasma to measure the optical aberrations, the subsequent aberration correction using a spatial light modulator and the fabrication of nanostructures using the corrected optical system.

© 2010 Optical Society of America

OCIS Codes
(090.1000) Holography : Aberration compensation
(140.3390) Lasers and laser optics : Laser materials processing
(250.5300) Optoelectronics : Photonic integrated circuits
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Laser Microfabrication

History
Original Manuscript: November 17, 2009
Revised Manuscript: December 19, 2009
Manuscript Accepted: December 20, 2009
Published: January 4, 2010

Citation
Alexander Jesacher, Graham D. Marshall, Tony Wilson, and Martin J. Booth, "Adaptive optics for direct laser writing with plasma emission aberration sensing," Opt. Express 18, 656-661 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-656


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18,265-269 (2006). [CrossRef]
  2. T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffera, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86,201106 (2005). [CrossRef]
  3. V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, and P. Laporta, "Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching," Appl. Phys. Lett. 88,191107 (2006). [CrossRef]
  4. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials 7,543-546 (2009). [CrossRef]
  5. Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, "3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction," Small 5,1144-1148 (2009). [PubMed]
  6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325,1513 (2009). [CrossRef] [PubMed]
  7. G. Della Valle, R. Osellame and P. Laporta, "Micromachining of photonic devices by femtosecond laser pulses," J. Opt. A 11,013001 (2009).
  8. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, "Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure," Opt. Express 16,20029-20037 (2008). [CrossRef] [PubMed]
  9. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, "Multiphoton Fabrication," Angew. Chem. Int. Ed. 46,6238-6258 (2007). [CrossRef]
  10. M. J. Booth, "Adaptive optics in microscopy," Phil. Trans. R. Soc. A 365,2829-2843 (2007). [CrossRef] [PubMed]
  11. S. Campbell, S. M. F. Triphan, R. El-Agmy, A. H. Greenaway, and D. T. Reid, "Direct optimization of femtosecond laser ablation using adaptive wavefront shaping," J. Opt. A 9,11001104 (2007).
  12. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, "Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction," Opt. Express 16,5481-5492 (2008). [CrossRef] [PubMed]
  13. N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Valle, "Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses," Opt. Lett. 28,1591-1593 (2003). [CrossRef] [PubMed]
  14. M. A. A. Neil, M. J. Booth and T. Wilson, "New modal wave-front sensor: a theoretical analysis," J. Opt. Soc. Am. 17,1098-1107 (2000). [CrossRef]
  15. M. J. Booth, M. A. A. Neil, R. Juškaitis and T. Wilson, "Adaptive aberration correction in a confocal microscope," PNAS 99,57885792 (2002). [CrossRef]
  16. M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Active aberration correction for the writing of three-dimensional optical memory devices," Appl. Opt. 41,1374-1379 (2002). [CrossRef] [PubMed]
  17. P. Török, P. Varga, Z. Laczik and G. R. Booker "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12,325-331 (1995). [CrossRef]
  18. M. J. Booth, M. A. A. Neil and T. Wilson, "Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media," J. Microsc. 192,90-98 (1998). [CrossRef]
  19. G. D. Marshall, M. Ams, and M. J. Withford, "Direct laser written waveguide Bragg gratings in bulk fused silica," Opt. Lett. 31,2690-2691 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited