OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 685–693

Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light

Perrine Berger, Mehdi Alouini, Jérôfme Bourderionnet, Fabien Bretenaker, and Daniel Dolfi  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 685-693 (2010)
http://dx.doi.org/10.1364/OE.18.000685


View Full Text Article

Enhanced HTML    Acrobat PDF (347 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed an improved model in order to predict the RF behavior and the slow light properties of the SOA valid for any experimental conditions. It takes into account the dynamic saturation of the SOA, which can be fully characterized by a simple measurement, and only relies on material fitting parameters, independent of the optical intensity and the injected current. The present model is validated by showing a good agreement with experiments for small and large modulation indices.

© 2010 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Slow and Fast Light

History
Original Manuscript: September 3, 2009
Revised Manuscript: November 19, 2009
Manuscript Accepted: December 15, 2009
Published: January 5, 2010

Citation
Perrine Berger, Mehdi Alouini, Jérôme Bourderionnet, Fabien Bretenaker, and Daniel Dolfi, "Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light," Opt. Express 18, 685-693 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-685


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Yao, "Microwave Photonics," J. Lightwave Technol. 27, 314-335 (2009). [CrossRef]
  2. D. Dolfi, P. Joffre, J. Antoine, J-P. Huignard, D. Philippet, and P. Granger, "Experimental demonstration of a phased-array antenna optically controlled with phase and time delays," Appl. Opt. 35, 5293-5300 (1996). [CrossRef] [PubMed]
  3. J. Capmany, B. Ortega, and D. Pastor, "A Tutorial on Microwave Photonic Filters," J. Lightwave Technol. 24, 201-229 (2006). [CrossRef]
  4. C. J. Chang-Hasnain and S. L. Chuang, "Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices," J. Lightwave Technol. 24, 4642-4654 (2006). [CrossRef]
  5. H. Su, and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 88, 061102 (2006). [CrossRef]
  6. A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay Limit of Slow Light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 18, 731-733 (2006). [CrossRef]
  7. B. Pesala, F. Sedgwick, A. Uskov, and C. Chang-Hasnain, "Ultrahigh-bandwidth electrically tunable fast and slow light in semiconductor optical amplifiers," J. Opt. Soc. Am. B 25, C46-C54 (2008). [CrossRef]
  8. L. Th’evenaz, "Slow and fast light in optical fibres," Nat. Photonics 2, 474-481 (2008). [CrossRef]
  9. P.-C. Ku, F. Sedgwick, C.J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S-L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004). [CrossRef] [PubMed]
  10. R. Boula-Picard, M. Alouini, J. Lopez, N. Vodjdani, and J.-C. Simon, "Impact of the Gain Saturation Dynamics in Semiconductor Optical Amplifiers on the Characteristics of an Analog Optical Link," J. Lightwave Technol. 23, 2420-2426 (2005). [CrossRef]
  11. J. Mørk, R. Kjr, M. van der Poel, and K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Express 13, 8136-8145 (2005). [CrossRef] [PubMed]
  12. S. S. Maicas, F. Ohman, J. Capmany, and J. Mørk, "Controlling Microwave Signals by Means of Slow and Fast Light Effects in SOA-EA Structures," IEEE Photon. Technol. Lett. 19, 1589-1591 (2007). [CrossRef]
  13. Y. Chen and J. Mørk, "Broadband Microwave Phase Shifter based on High Speed Cross Gain Modulation in Quantum Dot Semiconductor Optical Amplifiers," in International Topical Meeting on Slow and Fast Light, 2009 OSA Technical Digest (Optical Society of America, 2009).
  14. G. P. Agrawal, "Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers," J. Opt. Soc. Am. B 5, 147-159 (1988). [CrossRef]
  15. E. Zhou, X. Zhang, and D. Huang, "Evaluating characteristics of semiconductor optical amplifiers using optical pumping near the transparency," J. Opt. Soc. Am. B 24, 2647-2657 (2007). [CrossRef]
  16. A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, andM. Krakowski, "Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm," Opt. Express 16, 2141-2146 (2008). [CrossRef] [PubMed]
  17. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, "Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers," IEEE J. Quantum Electron. 44, 658-666 (2008). [CrossRef]
  18. S.-W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, "Slow Light Based on Coherent Population Oscillation in Quantum Dots at Room Temperature," IEEE J. Quantum Electron. 43, 196-205 (2007). [CrossRef]
  19. M. J. Connelly, "Wideband Semiconductor Optical Amplifier Steady-State Numerical Model," IEEE J. Quantum Electron. 37, 439-447 (2001). [CrossRef]
  20. Y. Chen, W. Xue, F. Ohman, and J. Mork, "Theory of optical-filtering enhanced slow and fast light effects in semiconductor optical waveguides," J. Lightwave Technol. 23, 3734-3743 (2008). [CrossRef]
  21. T. Mukai and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier Quantum Electronics," J. Quantum Electron. 16, 865-875 (1990) [CrossRef]
  22. A. Haug, "Evidence of the importance of auger recombination for InGaAsP lasers," IEE Electron. Lett. 20, 85-86 (1984). [CrossRef]
  23. E. Rosencher and B. Vinter, Optoelectronics (Cambridge, 2002). [CrossRef]
  24. M. Shtaif, B. Tromborg, and G. Eisenstein, "Noise spectra of semiconductor optical amplifiers: relation between semiclassical and quantum descriptions," J. Quantum Electron. 34, 869-878 (1998). [CrossRef]
  25. A. Ouacha, Q. Chen, M. Willander, R. A. Logan, and T. Tanbun-Ek, "Recombination process and its effect on the dc performance of inp/ingaas single-heterojunction bipolar transistors," J. Appl. Phys. 73, 444-4447 (1993). [CrossRef]
  26. L. Y. Leu, J. T. Gardner, and S. R. Forrest, "A high-gain, high-bandwidth in0.53ga0.47as/inp heterojunction phototransistor for optical communications," J. Appl. Phys. 69, 1052-1062 (1991). [CrossRef]
  27. E. A. J. M. Bente, Y. Barbarin, M. J. R. Heck, and M. K. Smit, "Modeling of integrated extended cavity inp/ingaasp semiconductor modelocked ring lasers," Opt. Quantum Electron. 40, 131-148 (2008). [CrossRef]
  28. M. Petrauskas, S. Juodkazis, V. Netikis, M. Willander, A. Ouacha, and B. Hammarlund, "Picosecond carrier dynamics in highly excited ingaas/inp/ingaasp/inp structures," Semiconductor Sci. Technol. 7, 1355-1358 (1992). [CrossRef]
  29. E. Shumakher, S. Dill, and G. Eisenstein, "Optoelectronic Oscillator Tunable by an SOA Based Slow Light Element," J. Lightwave Technol. 27, 4063-4068 (2009). [CrossRef]
  30. S. O Duill, R. F. O’Dowd, and G. Eisenstein, "On the role of high-order coherent population oscillations in slow and fast light propagation using semiconductor optical amplifiers," J. Sel. Top. Quantum Electron. 15, 578-584 (2009). [CrossRef]
  31. P. Berger, J. Bourderionnet, M. Alouini,F. Bretenaker and D. Dolfi, "Theoretical Study of the Spurious-Free Dynamic Range of a Tunable Delay Line based on Slow Light in SOA," Opt. Express 27, 20584-20597 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited