OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 746–753

Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers

Christian Pflügl, Laurent Diehl, Arkadiy Lyakh, Qi Jie Wang, Richard Maulini, Alexei Tsekoun, C. Kumar N. Patel, Xiaojun Wang, and Federico Capasso  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 746-753 (2010)
http://dx.doi.org/10.1364/OE.18.000746


View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method to study current paths through quantum cascade lasers (QCLs). The temperature dependence of the current is measured at a fixed voltage. At low temperatures we find activation energies that correspond to the energy difference between the injector ground state and the upper laser level. At higher temperatures additional paths with larger activation energies are found. Application of this method to high performance QCLs based on strained InGaAs/InAlAs quantum wells and barriers with different band-offsets allows us to identify individual parasitic current paths through the devices. The results give insight into the transport properties of quantum cascade lasers thus providing a useful tool for device optimization.

© 2010 OSA

OCIS Codes
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 23, 2009
Revised Manuscript: December 21, 2009
Manuscript Accepted: December 21, 2009
Published: January 5, 2010

Citation
Christian Pflügl, Laurent Diehl, Arkadiy Lyakh, Qi Jie Wang, Richard Maulini, Alexei Tsekoun, C. Kumar N. Patel, Xiaojun Wang, and Federico Capasso, "Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers," Opt. Express 18, 746-753 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-746


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008). [CrossRef]
  2. Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008). [CrossRef]
  3. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009). [CrossRef]
  4. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. K. N. Patel, C. Pflügl, L. Diehl, and F. Capasso, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. Appl. Phys. Lett. 95, 151112 (2009).
  5. A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006). [CrossRef] [PubMed]
  6. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, “Short wavelength (lambda ~ 3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs,” Appl. Phys. Lett. 72(6), 680 (1998). [CrossRef]
  7. M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, G. Fedorov, and D. Smirnov, “Intervalley carrier transfer in short-wavelength InP-based quantum-cascade laser,” Appl. Phys. Lett. 93(7), 071109 (2008). [CrossRef]
  8. W. T. Masselink, Mykhaylo P. Semtsiv, S. Dressler, M. Ziegler, M. Wienold, “Physics, growth, and performance of (In,Ga)As–AlP/InP quantum-cascade lasers emitting at l < 4 μm,” Phys. stat. sol. (b) 244, 8, 2906 (2007).
  9. T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, “Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well,” Appl. Phys. Lett. 78(22), 3448 (2001). [CrossRef]
  10. J. C. Shin, M. D'Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009). [CrossRef]
  11. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39(3), 1871–1883 (1989). [CrossRef]
  12. H. Choi, L. Diehl, Z.-K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, “Gain recovery dynamics and photon-driven transport in quantum cascade lasers,” Phys. Rev. Lett. 100(16), 167401 (2008). [CrossRef] [PubMed]
  13. R. F. Kazarinov and R. A. Suris, “Electric and electromagnetic properties of semiconductors with superlattice,” Sov. Phys. Semicond. 6, 120 (1972).
  14. C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant Tunneling in Quantum Cascade Lasers,” IEEE J. Quantum Electron. 34(9), 1722–1729 (1998). [CrossRef]
  15. R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78(15), 155328 (2008). [CrossRef]
  16. A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006). [CrossRef]
  17. S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützemacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures,” Appl. Phys. Lett. 86(6), 062113 (2005). [CrossRef]
  18. R. Ferreira and G. Bastard, “Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures,” Phys. Rev. B 40(2), 1074–1086 (1989). [CrossRef]
  19. G. Molis, A. Krotkus, and V. Vaičaitis, “Intervalley separation in the conduction band of InGaAs measured by terahertz excitation spectroscopy,” Appl. Phys. Lett. 94(9), 091104 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited