OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 754–764

plasmons for subwavelength terahertz circuitry

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and Esteban Moreno  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 754-764 (2010)
http://dx.doi.org/10.1364/OE.18.000754


View Full Text Article

Enhanced HTML    Acrobat PDF (689 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new approach for the spatial and temporal modulation of electromagnetic fields at terahertz frequencies is presented. The waveguid-ing elements are based on plasmonic and metamaterial notions and consist of an easy-to-manufacture periodic chain of metallic box-shaped elements protruding out of a metallic surface. It is shown that the dispersion relation of the corresponding electromagnetic modes is rather insensitive to the waveguide width, preserving tight confinement and reasonable absorption loss even when the waveguide transverse dimensions are well in the subwavelength regime. This property enables the simple implementation of key devices, such as tapers and power dividers. Additionally, directional couplers, waveguide bends, and ring resonators are characterized, demonstrating the flexibility of the proposed concept and the prospects for terahertz applications requiring high integration density.

© 2010 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(300.6495) Spectroscopy : Spectroscopy, teraherz
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Integrated Optics

History
Original Manuscript: December 3, 2009
Revised Manuscript: December 30, 2009
Manuscript Accepted: December 30, 2009
Published: January 5, 2010

Virtual Issues
January 8, 2010 Spotlight on Optics

Citation
D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and Esteban Moreno, "Domino plasmons for subwavelength terahertz circuitry," Opt. Express 18, 754-764 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-754


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nat. Mater. 1, 26-33 (2002). [CrossRef]
  2. P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory and Tech. 50, 910-928 (2002). [CrossRef]
  3. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photon. 1, 97-105 (2007). [CrossRef]
  4. S. Withington, "Terahertz astronomical telescopes and instrumentation," Phil. Trans. R. Soc. Lond. A 362, 395-402 (2004). [CrossRef]
  5. P. H. Siegel, "Terahertz technology in Biology and Medicine," IEEE Trans. Microwave Theory Tech. 52, 2438-2447 (2004). [CrossRef]
  6. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons and drugs," Semicond. Sci. Technol. 20, 266-280 (2005). [CrossRef]
  7. J. Zhang and D. Grischkowsky, "Waveguide terahertz time-domain spectroscopy of nanometer water layers," Opt. Lett. 29, 1617-1619 (2004). [CrossRef] [PubMed]
  8. J. Cunningham, M. Byrne, P. Upadhya, M. Lachab, E. H. Linfield, and A. G. Davies, "Terahertz evanescent field microscopy of dielectric materials using on-chip waveguides," Appl. Phys. Lett. 92, 032903 (2008). [CrossRef]
  9. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000). [CrossRef]
  10. H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002). [CrossRef]
  11. M. Nagel, A. Marchewka, and H. Kurz, "Low-index discontinuity terahertz waveguides," Opt. Express 14, 9944-9954 (2006). [CrossRef] [PubMed]
  12. T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113 (2006). [CrossRef]
  13. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  14. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  15. W. Zhu, A. Agrawal, and A. Nahata, "Planar plasmonic terahertz guided-wave devices," Opt. Express 16, 6216-6226 (2008). [CrossRef] [PubMed]
  16. S. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett. 97, 176805 (2006). [CrossRef] [PubMed]
  17. A. I. Fernandez-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal "Guiding terahertz waves along subwavelength channels," Phys. Rev. B 79, 233104 (2009). [CrossRef]
  18. A. I. Fernandez-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz wedge plasmon polaritons," Opt. Lett. 34, 2063-2065 (2009). [CrossRef] [PubMed]
  19. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005). [CrossRef]
  20. E. Verhagen, M. Spasenovic, A. Polman, and L. K. Kuipers, "Nanowire Plasmon Excitation by Adiabatic Mode Transformation," Phys. Rev. Lett. 102, 203904 (2009). [CrossRef] [PubMed]
  21. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484 (2000). [CrossRef]
  22. D. L. Sengupta, "On the phase velocity of wave propagation along an infinite Yagi structure," IRE Trans. Antennas Propag. 7, 234-239 (1959). [CrossRef]
  23. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider,W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999). [CrossRef]
  24. S. A. Maier, M. L. Brongersma, and H. A. Atwater, "Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices," Appl. Phys. Lett. 78, 16-18 (2001). [CrossRef]
  25. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, "Nanoconcentration of terahertz radiation in plasmonic waveguides," Opt. Express 16, 18576-18589 (2008). [CrossRef]
  26. H. Liang, S. Ruan, and M. Zhang, "Terahertz surface wave propagation and focusing on conical metal wires," Opt. Express 16, 18241-18248 (2008). [CrossRef] [PubMed]
  27. S. Kawata, Y. Inouye, and P. Verma, "Plasmonics for near-field nano-imaging and superlensing," Nature Photon. 3, 388-394 (2009). [CrossRef]
  28. K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, and H. Yokoyama, "Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture," Appl. Phys. Lett. 89, 201120 (2006). [CrossRef]
  29. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, "Deep Subwavelength Terahertz Waveguides Using Gap Magnetic Plasmon," Phys. Rev. Lett. 102, 043904 (2009). [CrossRef] [PubMed]
  30. W. Huang, Y. Zhang, and B. Li, "Ultracompact wavelength and polarization splitters in periodic dielectric waveguides," Opt. Express 16, 1600-1609 (2008). [CrossRef] [PubMed]
  31. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, "Extremely short-length surface plasmon resonance devices," Opt. Express 16, 20227-20240 (2008). [CrossRef] [PubMed]
  32. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  33. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983). [CrossRef] [PubMed]
  34. P. Johnson, and R. Christy, R. "Optical constants of the nobel metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited