OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 787–798

Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture

Kazuo Tanaka, Kiyofumi Katayama, and Masahiro Tanaka  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 787-798 (2010)
http://dx.doi.org/10.1364/OE.18.000787


View Full Text Article

Enhanced HTML    Acrobat PDF (478 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical study of the nanofocusing of surface plasmon polaritons (SPPs) by a pyramidal structure on a rectangular aperture is performed by the volume integral equation method. It is possible to perform nanofocusing using this structure by using a linearly polarized wave as the incident wave. The focusing process of SPPs by the tip of the pyramidal structure has been demonstrated numerically. The characteristics of the focused optical field near the tip have been investigated in detail. It was found to be similar to that of monopole rather than that of a tiny dipole. The optical field at the tip is sensitive to the local shape of the tip. The enhanced intensity on the tip increases with an increase in the aperture width.

© 2010 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 9, 2009
Revised Manuscript: November 9, 2009
Manuscript Accepted: November 9, 2009
Published: January 6, 2010

Citation
Kazuo Tanaka, Kiyofumi Katayama, and Masahiro Tanaka, "Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture," Opt. Express 18, 787-798 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-787


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Ohtsu, and H. Hori, “Near-Field Nano-Optics: From Basic Principles to Nano-Fabrication and Nano-Photonics,” Plenum Pub. Corp. (1999).
  2. V. M. Shalaev and S. Kawata ed., “Nanophotonics with Surface Plasmons,” Elsevier Science Ltd. (2007).
  3. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, “Principles of Nanophotonics,” Chapman & Hall (2008).
  4. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997). [CrossRef] [PubMed]
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001). [CrossRef]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  7. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003). [CrossRef]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, “Plasmonic Nanowaveguide and Circuits”, World Scientific, 2008.
  10. E. Oesterschulze, G. Georgiev, M. Müller-Wiegand, A. Vollkopf, and O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202(Pt 1), 39–44 (2001). [CrossRef] [PubMed]
  11. S. Xiaolei, L. Hesselink, and R. L. Thornton, “Greatly enhanced power throughput from a “C”-shaped metallic nano-aperture for near field optical applications”, Quantum Electronics and Laser Science Conference, 2002. Technical Digest. 40.
  12. A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801–210804 (2002). [CrossRef] [PubMed]
  13. K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210(Pt 3), 294–300 (2003). [CrossRef] [PubMed]
  14. K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A 237(1-2), 103–105 (1997). [CrossRef]
  15. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785 (2000). [CrossRef]
  16. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef] [PubMed]
  17. N. A. Janunts, K. S. Baghdasaryan, Kh. V. Nerkararyan and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Comm. 253, (2005).
  18. R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340(1-4), 299–302 (2005). [CrossRef]
  19. M. W. Vogel and K. Dmitri, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007). [CrossRef]
  20. N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 1557-1955 (Print) 1557−1963 (Online) (2007).
  21. W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007). [CrossRef] [PubMed]
  22. T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal-dielectric probe,” Opt. Express 17(11), 9191–9196 (2009). [CrossRef] [PubMed]
  23. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008). [CrossRef]
  24. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007). [CrossRef]
  25. K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007). [CrossRef]
  26. K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008). [CrossRef]
  27. A. Downes, D. Salter, and A. Elfick, “Simulations of atomic resolution tip-enhanced optical microscopy,” Opt. Express 14(23), 11324–11329 (2006). [CrossRef] [PubMed]
  28. A. E. Babayan and Kh. V. Nerkararyan, “The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,” Ultramicroscopy 107(12), 1136–1140 (2007). [CrossRef] [PubMed]
  29. J. H. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38(4), 409–426 (2007). [CrossRef]
  30. H. J. Maas, A. Naber, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Imaging of photonic nanopatterns by scanning near-field optical microscopy,” J. Opt. Soc. Am. B 19(6), 1295–1300 (2002). [CrossRef]
  31. H. J. Maas, J. Heimel, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50-100 nm by scanning near-field optical microscopy,” J. Microsc. 209(Pt 3), 241–248 (2003). [CrossRef] [PubMed]
  32. K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to-edge plasmon modes,” Applied Physics B: Lasers and Optics 93, 0946–2171 (Print) 1432–0649 (Online) (2008).
  33. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007). [CrossRef]
  34. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006). [CrossRef]
  35. K. Tanaka, M. Tanaka, and T. Sugiyama, “Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons,” Opt. Express 14(2), 832–846 (2006). [CrossRef] [PubMed]
  36. K. Tanaka, M. Tanaka, and K. Katayama, “Simulation of near-field scanning optical microscopy using a plasmonic gap probe,” Opt. Express 14(22), 10603–10613 (2006). [CrossRef] [PubMed]
  37. H. F. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002). [CrossRef]
  38. A. V. Goncharenko, H. C. Chang, and J. K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107(2-3), 151–157 (2007). [CrossRef]
  39. M. W. Vogel and D. K. Gramotnev, “Optimization of plasmon nano-focusing in tapered metal rods,” J. Nanophotonics 2, 1–17 (2008). [CrossRef]
  40. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  41. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited