OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 831–842

Experimental validation of the symmetric decomposition of Mueller matrices

Clément Fallet, Angelo Pierangelo, Razvigor Ossikovski, and Antonello De Martino  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 831-842 (2010)
http://dx.doi.org/10.1364/OE.18.000831


View Full Text Article

Enhanced HTML    Acrobat PDF (434 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally assess the validity of the symmetric decomposition of Mueller matrices [R. Ossikovski, J. Opt. Soc. Am A 26, 1109-1118 (2009)] into a sequence of five factors consisting of a diagonal depolarizer between two retarder and diattenuator pairs. The raw data were Mueller images of combinations of polarization components which were individually measured and then assembled in different combinations. The possibility to recover all the elements is discussed, including the experimentally relevant cases of “degenerate” depolarizers, with two equal eigenvalues, which were not explicitly considered in the general theory.

© 2010 OSA

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: September 17, 2009
Revised Manuscript: October 20, 2009
Manuscript Accepted: December 4, 2009
Published: January 6, 2010

Citation
Clément Fallet, Angelo Pierangelo, Razvigor Ossikovski, and Antonello De Martino, "Experimental validation of the symmetric decomposition of Mueller matrices," Opt. Express 18, 831-842 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-831


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Gil and E. Bernabeu, “Depolarization and polarization indexes of an optical-system,” Opt. Acta (Lond.) 33, 185–189 (1986).
  2. S. R. Cloude, “Physical Realisability of Matrix Operators in Polarimetry,” Proc. SPIE 1166, 177–185 (1989).
  3. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996). [CrossRef]
  4. J. Morio and F. Goudail, “Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices,” Opt. Lett. 29(19), 2234–2236 (2004). [CrossRef] [PubMed]
  5. R. Ossikovski, A. De Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett. 32(6), 689–691 (2007). [CrossRef] [PubMed]
  6. R. Ossikovski, “Analysis of depolarizing Mueller matrices through a symmetric decomposition,” J. Opt. Soc. Am. A 26(5), 1109–1118 (2009). [CrossRef]
  7. R. Sridhar and R. Simon, “Normal form for Mueller matrices in polarization optics,” J. Mod. Opt. 41(10), 1903–1915 (1994). [CrossRef]
  8. A. V. Gopala Rao, K. S. Mallesh, and Sudha, “On the algebraic characterization of a Mueller matrix in polarization optics I. Identifying a Mueller matrix from its N matrix,” J. Mod. Opt. 45, 955–987 (1998).
  9. Z. Xing, “On the deterministic and non-deterministic Mueller matrices,” J. Mod. Opt. 39(3), 461–484 (1992). [CrossRef]
  10. M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” J. Europ. Opt. Soc. Rap. Public 2, 07018 (2007). [CrossRef]
  11. B. Laude-Boulesteix, A. De Martino, B. Drevillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2224–2832 (2004). [CrossRef]
  12. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and mueller-matrix ellipsometers,” Appl. Opt. 38(16), 3490–3502 (1999). [CrossRef]
  13. C. Brosseau, Polarized Light: A Statistical Optics Approach, (Wiley, 1998), Chap 4.1 and 4.4.
  14. R. Ossikovski, M. Anastasiadou, and A. De Martino, “Product decompositions of depolarizing Mueller matrices with negative determinants,” Opt. Commun. 281(9), 2406–2410 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited