OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 923–930

Supercontinuum generation in a high index doped silica glass spiral waveguide

David Duchesne, Marco Peccianti, Michael R. E. Lamont, Marcello Ferrera, Luca Razzari, Francois Légaré, Roberto Morandotti, Sai Chu, Brent E. Little, and David J. Moss  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 923-930 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate supercontinuum (SC) generation at both 1550 nm and 1288 nm in a compact (< 5mm2) 45 cm spiral waveguide composed of CMOS-compatible doped high-index glass. While both wavelengths have weak dispersion and are near zero dispersion points, they present different symmetries. At 1550nm, the normal dispersion regime takes place at longer wavelengths, whereas at 1290nm it is at shorter wavelengths, and we observe features in the SC spectra that clearly reflect this. In particular, the spectrum at 1550 nm is more than 300 nm wide (limited by detection) and is well reproduced by simulations based on the measured dispersion. This work represents a practical on-chip broadband wavelength source with potential use in many important applications.

© 2010 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.3270) Nonlinear optics : Kerr effect
(130.2755) Integrated optics : Glass waveguides
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: November 16, 2009
Revised Manuscript: December 19, 2009
Manuscript Accepted: December 20, 2009
Published: January 6, 2010

David Duchesne, Marco Peccianti, Michael R. E. Lamont, Marcello Ferrera, Luca Razzari, Francois Légaré, Roberto Morandotti, Sai Chu, Brent E. Little, and David J. Moss, "Supercontinuum generation in a high index doped silica glass spiral waveguide," Opt. Express 18, 923-930 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  2. M. H. Frosz, T. Sorensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 23(8), 1692–1699 (2006). [CrossRef]
  3. T. A. Birks, W. J. Wadsworth, and P. S. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000). [CrossRef]
  4. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005). [CrossRef] [PubMed]
  5. R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006). [CrossRef] [PubMed]
  6. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864 (2004). [CrossRef] [PubMed]
  7. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006). [CrossRef]
  8. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm - 5 μm,” Proc. SPIE 6102, 54–68 (2006).
  9. G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41(14), 795–797 (2005). [CrossRef]
  10. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [CrossRef] [PubMed]
  11. I. W. Hsieh, X. G. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. N. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007). [CrossRef] [PubMed]
  12. L. H. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32(4), 391–393 (2007). [CrossRef] [PubMed]
  13. M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008). [CrossRef] [PubMed]
  14. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007). [CrossRef]
  15. P. V. Koonath, D. R. Solli, and B. Jalali, “Limiting Nature of Continuum Generation in Silicon,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Optical Society of America, CFC4 (2008).
  16. B. J. Eggleton, D. J. Moss, and S. Radic, “Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools,” (Academic Press, Oxford, 2008).
  17. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008). [CrossRef] [PubMed]
  18. J. S. Levy, A. Gondarenko, A. C. Turner-Foster, M. A. Foster, A. L. Gaeta, and M. Lipson, “Four-wave Mixing in Integrated Silicon Nitride Waveguides”, Paper CMFF5, Conference for Lasers and Electro Optics (CLEO), Baltimore MA, May (2009).
  19. D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009). [CrossRef] [PubMed]
  20. B. E. Little, “A VLSI photonics platform,” in Conference on Optical Fiber Communication (OFC), 444–445 (2003).
  21. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006). [CrossRef]
  22. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, E. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004). [CrossRef]
  23. M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D. X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q=1.2 million,” Opt. Express 17(16), 14098–14103 (2009). [CrossRef] [PubMed]
  24. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008). [CrossRef]
  25. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, B. E. Little, S. Chu, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nature Photon. doi: .
  26. M. R. E. Lamont, B. T. Kuhlmey, and C. M. de Sterke, “Multi-order dispersion engineering for optimal four-wave mixing,” Opt. Express 16(10), 7551–7563 (2008). [CrossRef] [PubMed]
  27. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Quantum electronics - principles and applications (Academic Press, San Diego, California, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited