OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 931–937

Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography

Wen-Di Li and Stephen Y. Chou  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 931-937 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO2 square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.

© 2010 OSA

OCIS Codes
(040.7190) Detectors : Ultraviolet
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Diffraction and Gratings

Original Manuscript: November 30, 2009
Revised Manuscript: December 21, 2009
Manuscript Accepted: December 21, 2009
Published: January 6, 2010

Wen-Di Li and Stephen Y. Chou, "Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography," Opt. Express 18, 931-937 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Oshima, T. Okuno, N. Arai, N. Suzuki, H. Hino, and S. Fujita, “Flame Detection by a beta-Ga2O3-Based Sensor,” Jpn. J. Appl. Phys. 48(1), 011605 (2009). [CrossRef]
  2. E. V. Gorokhov, A. N. Magunov, V. S. Feshchenko, and A. A. Altukhov, “Solar-blind UV flame detector based on natural diamond,” Instrum. Exp. Tech. 51(2), 280–283 (2008). [CrossRef]
  3. A. Y. Hudeish, C. K. Tan, A. A. Aziz, and Z. Hassan, “A chemical sensor based on AlGaN,” Functional Materials and Devices 517, 33–36 (2006).
  4. J. T. Clarke, W. R. Skinner, M. B. Vincent, T. Irgang, V. Suratkal, H. Grassl, and J. T. Trauger, “Laboratory studies of alkali metal filter deposition, ultraviolet transmission, and visible blocking,” Appl. Opt. 38(9), 1803–1813 (1999). [CrossRef]
  5. G. Chen, Z. Y. Xu, H. P. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17(5), 3929–3940 (2009). [CrossRef] [PubMed]
  6. Z. Y. Xu and B. M. Sadler, “Ultraviolet communications: Potential and state-of-the-art,” IEEE Commun. Mag. 46(5), 67–73 (2008). [CrossRef]
  7. M. Razeghi and R. McClintock, “A review of III-nitride research at the Center for Quantum Devices,” J. Cryst. Growth 311(10), 3067–3074 (2009). [CrossRef]
  8. R. McClintock, K. Mayes, A. Yasan, D. Shiell, P. Kung, and M. Razeghi, “320x256 solar-blind focal plane arrays based on AlxGa1-xN,” Appl. Phys. Lett. 86(1), 011117 (2005). [CrossRef]
  9. F. Moscatelli, “Silicon carbide for UV, alpha, beta and X-ray detectors: Results and perspectives,” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 583(1), 157–161 (2007).
  10. J. Xing, E. Guo, K. J. Jin, H. B. Lu, J. Wen, and G. Z. Yang, “Solar-blind deep-ultraviolet photodetectors based on an LaAlO(3) single crystal,” Opt. Lett. 34(11), 1675–1677 (2009). [CrossRef] [PubMed]
  11. Y. Z. Jin, J. P. Wang, B. Q. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett. 8(6), 1649–1653 (2008). [CrossRef] [PubMed]
  12. R. W. Wood, “Remarkable optical properties of the alkali metals,” Phys. Rev. 44(5), 353–360 (1933). [CrossRef]
  13. R. G. Safin, I. S. Gainutdinov, R. S. Sabirov, and M. K. Azamatov, “Solar-blind filter for the ultraviolet region,” J. Opt. Technol. 74(3), 208–210 (2007). [CrossRef]
  14. F. G. Haibach, A. E. Greer, M. V. Schiza, R. J. Priore, O. O. Soyemi, and M. L. Myrick, “On-line reoptimization of filter designs for multivariate optical elements,” Appl. Opt. 42(10), 1833–1838 (2003). [CrossRef] [PubMed]
  15. T. Tanaka, M. Akazawa, and E. Sano, “Terahertz wave filter from cascaded thin-metal-film meshes with a triangular array of hexagonal holes,” Jpn. J. Appl. Phys. 43(Part 2), L287–L289 (2004). [CrossRef]
  16. K. Jefimovs, T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, M. Kaipiainen, and S. Nenonen, “Inductive grid filters for rejection of infrared radiation,” J. Mod. Opt. 51(11), 1651–1661 (2004).
  17. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15(23), 15457–15463 (2007). [CrossRef] [PubMed]
  18. Y. Ekinci, H. H. Solak, and C. David, “Extraordinary optical transmission in the ultraviolet region through aluminum hole arrays,” Opt. Lett. 32(2), 172–174 (2007). [CrossRef]
  19. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996). [CrossRef]
  20. Y. J. Lee and S.-W. Kang, “Atomic layer deposition of aluminum thin films using an alternating supply of trimethylaluminum and a hydrogen plasma,” Electrochem. Solid-State Lett. 5(10), C91–C93 (2002). [CrossRef]
  21. K. C. Johnson, “GD-Calc,” (2006)
  22. Handbook of optical constants of solids, edited by E. D. Palik, Academic Press, (1985)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited