OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 20712–20722

Thermal and laser properties of Yb:LuAG for kW thin disk lasers

Kolja Beil, Susanne T. Fredrich-Thornton, Friedjof Tellkamp, Rigo Peters, Christian Kränkel, Klaus Petermann, and Günter Huber  »View Author Affiliations

Optics Express, Vol. 18, Issue 20, pp. 20712-20722 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1274 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thin disk laser experiments with Yb:LuAG (Yb:Lu3Al5O12) were performed leading to 5 kW of output power and an optical-to-optical efficiency exceeding 60%. Comparative analyses of the laser relevant parameters of Yb:LuAG and Yb:YAG were carried out. While the spectroscopic properties were found to be nearly identical, investigations of the thermal conductivities revealed a 20% higher value for Yb:LuAG at Yb3+-doping concentrations of about 10%. Due to the superior thermal conductivity with respect to Yb:YAG, Yb:LuAG offers thus the potential of improved performance in high power thin disk laser applications.

© 2010 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 14, 2010
Revised Manuscript: August 16, 2010
Manuscript Accepted: August 20, 2010
Published: September 15, 2010

Kolja Beil, Susanne T. Fredrich-Thornton, Friedjof Tellkamp, Rigo Peters, Christian Kränkel, Klaus Petermann, and Günter Huber, "Thermal and laser properties of Yb:LuAG for kW thin disk lasers," Opt. Express 18, 20712-20722 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58, 365–372 (1994).
  2. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007). [CrossRef]
  3. A. Ellens, H. Andres, M. L. H. ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B 55(1), 180–186 (1997). [CrossRef]
  4. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu(2)O(3) thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007). [CrossRef] [PubMed]
  5. C. Kränkel, R. Peters, K. Petermann, P. Loiseau, G. Aka, and G. Huber, “Efficient continuous-wave thin disk laser operation of Yb:Ca4YO(BO3)3 in EIIZ and EIIX orientations with 26 W output power,” J. Opt. Soc. Am. B 26(7), 1310–1314 (2009). [CrossRef]
  6. C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87(2), 217–220 (2007). [CrossRef]
  7. C. R. E. Baer, C. Kränkel, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “227-fs pulses from a mode-locked Yb:LuScO3 thin disk laser,” Opt. Express 17(13), 10725–10730 (2009). [CrossRef] [PubMed]
  8. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008). [CrossRef]
  9. P. G. Klemens, “Thermal Resistance due to Point Defects at High Temperatures,” Phys. Rev. 119(2), 507–509 (1960). [CrossRef]
  10. G. A. Slack and D. W. Oliver, “Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions,” Phys. Rev. B 4(2), 592–609 (1971). [CrossRef]
  11. Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004). [CrossRef]
  12. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005). [CrossRef]
  13. J. Liu, V. Petrov, H. Zhang, J. Wang, and M. Jiang, “High-power laser performance of a-cut and c-cut Yb:LuVO4 crystals,” Opt. Lett. 31(22), 3294–3296 (2006). [CrossRef] [PubMed]
  14. G. Palmer, M. Schultze, M. Siegel, M. Emons, U. Bünting, and U. Morgner, “Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime,” Opt. Lett. 33(14), 1608–1610 (2008). [CrossRef] [PubMed]
  15. A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4,” J. Alloy. Comp. 380(1-2), 15–26 (2004). [CrossRef]
  16. D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125(1-2), 238–247 (2007). [CrossRef]
  17. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23(4), 676–683 (2006). [CrossRef]
  18. J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and matastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” J. Mater. Sci. 15(7), 1709–1718 (1980). [CrossRef]
  19. H. Okamoto, “The Ir-Re (Iridium-Rhenium) System,” J. Phase Equilibria 13(6), 649–650 (1992). [CrossRef]
  20. F. Euler and J. A. Bruce, “Oxygen coordinates of compounds with garnet structure,” Acta Crystallogr. 19(6), 971–978 (1965). [CrossRef]
  21. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer Verlag, Heidelberg, 1990).
  22. T. B. Coplen, “Atomic Weights of the Elements 1999 Technical Report,” Pure Appl. Chem. 73(4), 667–683 (2001). [CrossRef]
  23. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Heidelberg, Germany, 1999).
  24. D. Klimm, data from FactSage 5.3 (personal communication, 2009).
  25. N. P. Padture and P. G. Klemens, “Low Thermal Conductivity in Garnets,” J. Am. Ceram. Soc. 80(4), 1018–1020 (1997). [CrossRef]
  26. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001). [CrossRef]
  27. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007). [CrossRef] [PubMed]
  28. C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004). [CrossRef]
  29. K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000). [CrossRef]
  30. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–132 (1986). [CrossRef]
  31. D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136, A954–957 (1964). [CrossRef]
  32. R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy Levels of Yb3+ in Gallium and Aluminum Garnets. I. Spectra,” Phys. Rev. 159(2), 245–251 (1967). [CrossRef]
  33. D. L. Wood, “Energy Levels of Yb3+ in Garnets,” J. Chem. Phys. 39(7), 1671–1673 (1963). [CrossRef]
  34. J. A. Koningstein, “Energy Levels and Crystal-field Calculations of Trivalent Ytterbium in Yttrium Aluminum Garnet and Yttrium Gallium Garnet,” Theor. Chim. Acta 3(3), 271–277 (1965). [CrossRef]
  35. G. A. Bogomolova, L. A. Bumagina, A. A. Kaminskii, and B. Z. Malkin, “Crystal field in laser garnets with TR3+ ions in the exchange charge model,” Sov. Phys. Solid State 19 (1977).
  36. J. Kawanaka, H. Nishioka, N. Inoue, and K. Ueda, “Tunable continuous-wave Yb:YLF laser operation with a diode-pumped chirped-pulse amplification system,” Appl. Opt. 40(21), 3542–3546 (2001). [CrossRef]
  37. J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008). [CrossRef]
  38. E. S. R. Gopal, Specific Heats at Low Temperatures (Plenum Press, New York, 1966).
  39. X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, and P. Deng, “Structural, thermal, and luminescent properties of Yb-doped Y3Al5O12 crystals,” J. Opt. Soc. Am. B 21(3), 543–547 (2004). [CrossRef]
  40. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007). [CrossRef]
  41. R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003). [CrossRef]
  42. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961). [CrossRef]
  43. K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999). [CrossRef]
  44. K. Contag, Modellierung und numerische Auslegung des Yb:YAG Scheibenlasers (PhD-thesis, IFSW, University of Stuttgart, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited