OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 20799–20816

Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation

Pierre Gellie, Stefano Barbieri, Jean-François Lampin, Pascal Filloux, Christophe Manquest, Carlo Sirtori, Isabelle Sagnes, Suraj P. Khanna, Edmund H. Linfield, A. Giles Davies, Harvey Beere, and David Ritchie  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 20799-20816 (2010)
http://dx.doi.org/10.1364/OE.18.020799


View Full Text Article

Enhanced HTML    Acrobat PDF (1827 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that the cavity resonance frequency –the round-trip frequency – of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.

© 2010 Optical Society of America

OCIS Codes
(000.2700) General : General science

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 10, 2010
Revised Manuscript: July 23, 2010
Manuscript Accepted: July 26, 2010
Published: September 16, 2010

Citation
Pierre Gellie, Stefano Barbieri, Jean-François Lampin, Pascal Filloux, Christophe Manquest, Carlo Sirtori, Isabelle Sagnes, Suraj P. Khanna, Edmund H. Linfield, A. Giles Davies, Harvey Beere, and David Ritchie, "Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation," Opt. Express 18, 20799-20816 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-20-20799


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-GigaHertz mode-locked semiconductor lasers: constructions, experiments, models and applications,” IEE Proc. Optoelectron. 147(4), 251–278 (2000). [CrossRef]
  2. J. E. Bowers, P. A. Morton, A. Mar, and S. W. Corzine, “Actively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 25(6), 1426–1439 (1989). [CrossRef]
  3. L. A. Jiang, M. E. Grein, E. P. Ippen, C. McNeilage, J. Searls, and H. Yokoyama, “Quantum-limited noise performance of a mode-locked laser diode,” Opt. Lett. 27(1), 49–51 (2002). [CrossRef]
  4. D. Y. Kim, D.-S. Seo, and H.-F. Liu, “Observation of very efficeint hybrid mode-locking in InGaAs/InGaAsInP multiple quantum well distributed Bragg reflector laser diode,” Appl. Phys. Lett. 67(21), 3075–3077 (1995). [CrossRef]
  5. S. Arahira, and Y. Ogawa, “Synchronous mode-locking in passively mode-locked semiconductor laser diodes using optical short pulses repeated at subharmonics of the cavity round-trip frequency,” IEEE Photon. Technol. Lett. 8(2), 191–193 (1996). [CrossRef]
  6. T. Hoshida, H-F. Liu, M. Tsuchiya, Y. Ogawa, T. Kamiya, “Subharmonic Hybrid Mode-Locking of a Monolithic Semiconductor Laser,” IEEE J. Sel. Top Quantum Electron. 2, 514-516 (1996).
  7. R. Paiella, Intersubband transitions in quantum structures, (Mc-Graw Hill Nanoscience and Technology, New York, 2006)
  8. R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Ballargeon, A. Y. Cho, E. A. Whyttaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79(16), 2526–2528 (2001). [CrossRef]
  9. R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic active mode-locking of quantum cascade lasers,” Appl. Phys. Lett. 77(2), 169–171 (2000). [CrossRef]
  10. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009). [CrossRef] [PubMed]
  11. S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94(13), 131105 (2009). [CrossRef]
  12. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon Rev. 3(1-2), 45–66 (2009). [CrossRef]
  13. B. S. Williams, “Terahertz quantum cascade lasers,” Nat. Photonics 1(9), 517–525 (2007). [CrossRef]
  14. . W. Maineult, L. Ding, P. Gellie, P. Filloux, C. Sirtori, S. Barbieri, J. F. Lampin, T. Akalin, I. Sagnes, H. E. Beere, and D. A. Ritchie, “Microwave modulation of THz quantum cascade lasers: a transmission−line approach,” Appl. Phys. Lett. 96(2), 021108–021110 (2010). [CrossRef]
  15. . S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(14), 143510 (2007). [CrossRef]
  16. . M. Hajenius, P. Khosropanah, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33(4), 312–314 (2008). [CrossRef] [PubMed]
  17. . T. Yilmaz, C. M. Depriest, P. J. Delfyett, Jr., A. Braun, and J. Abeles, “Measurement of residual phase noise and longitudinal-mode linewidth in a hybridly mode-locked external linear cavity semiconductor laser,” Opt. Lett. 27(10), 872–874 (2002). [CrossRef]
  18. . C. Worrall, J. Alton, M. Houghton, S. Barbieri, H. E. Beere, D. Ritchie, and C. Sirtori, “Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz,” Opt. Express 14(1), 171–181 (2006). [CrossRef] [PubMed]
  19. . The origin of these sidebands is not clear. However they are not relevant for this work.
  20. . S. Barbieri, J. Alton, C. Baker, T. Lo, H. Beere, and D. Ritchie, “Imaging with THz quantum cascade lasers using a Schottky diode mixer,” Opt. Express 13(17), 6497–6503 (2005). [CrossRef] [PubMed]
  21. . S. Barbieri, W. Maineult, L. Ding, P. Gellie, P. Filloux, C. Sirtori, T. Akalin, J. F. Lampin, I. Sagnes, H. E. Beere, and D. A. Ritchie, “Microwave technology applied to THz quantum cascade lasers,” Proc. SPIE 7608, 76080X (2010). [CrossRef]
  22. . A. E. Siegman, Lasers, (University Science Books, Mill Valley, 1986).
  23. . Z. Ahmed, L. Zhai, A. J. Lowery, N. Onodera, and R. S. Tucker, “Locking bandwidth of actively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 29(6), 1714–1721 (1993). [CrossRef]
  24. . As mentioned above in the text, the oscillation in the intensity of fRF is produced by the non-ideal directivity of the coupler (Fig. 2(a)).
  25. . M. DiDomenico, Jr., “Small-signal analysis of internal (coupling-type) modulation of lasers,” J. Appl. Phys. 35(10), 2870–2876 (1964). [CrossRef]
  26. . O. P. McDuff, and S. E. Harris, “Nonlinear theory of internally loss-modulated lasers,” IEEE J. Quantum Electron. 3(3), 101–111 (1967). [CrossRef]
  27. . R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE 61(10), 1380–1385 (1973). [CrossRef]
  28. . B. Razavi, “A study of injection-locking and pulling in oscillators,” IEEE J. Sol. State Circuits. 39(9), 1415–1424 (2004). [CrossRef]
  29. . S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” Appl. Phys. Lett. 97, 053106–053108 (2005).
  30. . S. Barbieri, J. Alton, J. Fowler, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004). [CrossRef]
  31. . M. Hajenius, P. Khosropanah, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33(4), 312–314 (2008). [CrossRef] [PubMed]
  32. . S. Barbieri, J. Alton, H. E. Beere, E. H. Linfield, D. A. Ritchie, S. Withington, G. Scalari, L. Ajili, and J. Faist, “Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode,” Opt. Lett. 29(14), 1632–1634 (2004). [CrossRef] [PubMed]
  33. . A. Barkan, F. K. Tittel, D. M. Mittleman, R. Dengler, P. H. Siegel, G. Scalari, L. Ajili, J. Faist, H. E. Beere, E. H. Linfield, A. G. Davies, and D. A. Ritchie, “Linewidth and tuning characteristics of terahertz quantum cascade lasers,” Opt. Lett. 29(6), 575–577 (2004). [CrossRef] [PubMed]
  34. . S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. E. Beere, and D. A. Ritchie, “Phase locking of a 2.7THz quantum cascade laser to a mode-locked Er-fiber laser,” Nat. Photonics 4, 636 - 640 (2010). [CrossRef]
  35. . E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Ksalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire-lasers,” Phys. Rev. Lett. 96,173904 −173906 (2006). [CrossRef] [PubMed]
  36. . W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, J. Alton, H. Beere, and D. R. Ritchie, “Double metal quantum cascade lasers with micro-TEM horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008). [CrossRef]
  37. . Compared to Section 2, for the measurements presented in this Section we used a different SA with a higher resolution (1Hz compared to 10Hz).
  38. . We tried using longer devices. Unfortunately the cooling power needed to cool the QCLs was beyond the capability of our cryostat.
  39. . R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities,” Science 290(5497), 1739–1742 (2000). [CrossRef] [PubMed]
  40. . C. Y. Wang, L. Diehl, A. Gordon, C. Jirauschek, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, M. Troccoli, J. Faist, and F. Capasso, “Coherent instabilities in a semiconductor laser with fast gain recovery,” Phys. Rev. A 75(3), 031802 (2007). [CrossRef]
  41. . H. Choi, L. Diehl, Z. K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, “Gain recovery dynamics and photon-driven transport in quantum cascade lasers,” Phys. Rev. Lett. 100(16), 167401 (2008). [CrossRef] [PubMed]
  42. . M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11(12), 1–19 (2009). [CrossRef]
  43. . C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89(23), 231121 (2006). [CrossRef]
  44. . C. Walther, M. Fisher, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade laser operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91(13), 131122 (2007). [CrossRef]
  45. . S. Ramo, J. R. Whinnery, and T. V. Duzer, Field and waves in communication electronics, 2nd ed. (Wiley, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1632 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited