OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 20852–20861

Analysis of photorefractive optical damage in lithium niobate: application to planar waveguides

J. Villarroel, J. Carnicero, F. Luedtke, M. Carrascosa, A. García-Cabañes, J. M. Cabrera, A. Alcazar, and B. Ramiro  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 20852-20861 (2010)
http://dx.doi.org/10.1364/OE.18.020852


View Full Text Article

Enhanced HTML    Acrobat PDF (1671 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photorefractive optical damage of single beams in LiNbO3 crystals is analyzed within a framework of two photoactive centres (Fe2+/Fe3+ and NbLi4+/NbLi5+). It compares model simulations and significant experimental measurements in LiNbO3 waveguides. A good agreement is found in the performed comparisons: photovoltaic currents, refractive index changes and, especially relevant, in degraded beam-profiles. The progress of the degraded wavefront has been simulated by implementing a finite-difference beam-propagating method which includes the model equations. These results, together with previous ones on grating recording, provide a comprehensive, satisfactory explanation of most important questions on photorefractive optical damage.

© 2010 OSA

OCIS Codes
(160.3730) Materials : Lithium niobate
(160.4330) Materials : Nonlinear optical materials
(160.5320) Materials : Photorefractive materials

ToC Category:
Materials

History
Original Manuscript: May 4, 2010
Revised Manuscript: June 8, 2010
Manuscript Accepted: June 8, 2010
Published: September 17, 2010

Citation
J. Villarroel, J. Carnicero, F. Luedtke, M. Carrascosa, A. García-Cabañes, J. M. Cabrera, A. Alcazar, and B. Ramiro, "Analysis of photorefractive optical damage in lithium niobate: application to planar waveguides," Opt. Express 18, 20852-20861 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-20-20852


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Volk, M. Wöhlecke, and N. Rubinina, “Optical damage resistance in lithium niobate”, in Photorefractive materials and their applications 2, Materials, P. Günter and J. P. Huignard, eds, (Springer, 2007), pp165–203.
  2. D. Kip, and M. Wesner, “Photorefractive waveguides”, in Photorefractive materials and their applications 1, Basic effects, P. Günter and J.P. Huignard, eds, (Springer, 2006), pp 281–315.
  3. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007). [CrossRef]
  4. M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009). [CrossRef]
  5. A. Ashkin, G. D. Boyd, J. M. Dziedzik, R. G. Smith, A. A. Ballman, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966). [CrossRef]
  6. P. Gunter, and J. P. Huignard, eds., Photorefractive Materials and Their Applications (3 Vols.) (Springer Series in Optical Sciences, New York, 2006).
  7. T. Volk, N. Rubinina, and M. Wohlecke, “Optical-damage-resistant impurities in lithium-niobate,” J. Opt. Soc. Am. B 11(9), 1681–1687 (1994). [CrossRef]
  8. O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3 and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997). [CrossRef]
  9. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984). [CrossRef]
  10. W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett. 16(13), 995–997 (1991). [CrossRef] [PubMed]
  11. M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78(21), 3163–3165 (2001). [CrossRef]
  12. J. Rams, A. Alcázar de Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1-3), 211–216 (2000). [CrossRef]
  13. M. Falk, T. Woike, and K. Buse, “Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation,” Appl. Phys. Lett. 90(25), 847–849 (2007). [CrossRef]
  14. J. Carnicero, M. Carrascosa, A. Méndez, A. García-Cabañes, and J. M. Cabrera, “Optical damage control via the Fe2+/Fe3+ ratio in proton-exchanged LiNbO3 waveguides,” Opt. Lett. 32(16), 2294–2296 (2007). [CrossRef] [PubMed]
  15. J. C. Chon, W. Feng, and A. R. Mickelson, “Photorefractive damage threshold in Ti-LiNbO3 channel wave-guides,” Appl. Opt. 32(36), 7572–7580 (1993). [CrossRef] [PubMed]
  16. A. V. Ilyenkov, A. I. Khizniak, L. V. Kreminskaya, M. S. Soskin, and M. V. Vasnetsov, “Birth an evolution of wave-front dislocations in a laser beam passed through a photorefractive LiNbO3:Fe crystal,” Appl. Phys. B 62(5), 465–471 (1996). [CrossRef]
  17. E. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10(11), 2085–2092 (1993). [CrossRef]
  18. M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16(1), 115–120 (2008). [CrossRef] [PubMed]
  19. F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. 81(1), 013825 (2010). [CrossRef]
  20. J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3 analyses under the two-center model,” Appl. Phys. B 79(3), 351–358 (2004). [CrossRef]
  21. N. Iyi, K. Kitamura, F. Izumi, K. Yamamoto, T. Hayasi, H. Asano, and S. Kimura, “Comparative study of defects structures in lithium niobate with diferents compositions,” J. Solid State Chem. 101(2), 340–352 (1992). [CrossRef]
  22. N. Zotov, H. Boysen, F. Frey, T. Metzger, and E. Born, “Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction,” J. Phys. Chem. Solids 55(2), 145–152 (1994). [CrossRef]
  23. M. Simon, St. Wevering, K. Buse, and E. Kratzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997). [CrossRef]
  24. P. Herth, D. Schaniel, Th. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. 71(12), 125128 (2005). [CrossRef]
  25. G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in proton exchanged LiNbO3 waveguides,” Appl. Phys. B 76, 555–559 (2003).
  26. O. Caballero-Calero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light-intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102(7), 074509 (2007). [CrossRef]
  27. F. Luedtke, J. Villarroel, A. García-Cabañes, K. Buse, and M. Carrascosa, “Correlation between photorefractive index changes and optical damage thresholds in z-cut proton-exchanged-LiNbO3 waveguides,” Opt. Express 17(2), 658–665 (2009). [CrossRef] [PubMed]
  28. J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of holographic response and dark decays in α-phase PE:LiNbO3 waveguides,” J. Opt. A, Pure Appl. Opt. 10(10), 104008 (2008). [CrossRef]
  29. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000). [CrossRef]
  30. O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys. Condens. Matter 21(12), 123201 (2009). [CrossRef] [PubMed]
  31. G. Lifante, Integrated Photonics: Fundamentals (Wiley, Wiltshire, 2003).
  32. J. Ramiro-Diaz and A. A. de Velasco, “Ortogonal mode decomposition for efficient BPM applied to optical waveguides,” Ferroelectrics 390(1), 71–78 (2009). [CrossRef]
  33. F. Luedtke, Optical damage in proton-exchanged waveguides in lithium niobate crystals, Diploma Thesis, Bonn University (2008).
  34. R. Göring, Y. L. Zhan, and St. Steinberg, “Photoconductivity and photovoltaic behaviour of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys., A Mater. Sci. Process. 55, 97–100 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited