OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 20887–20893

Reflection-mode optical injection locking

Weijian Yang, Peng Guo, Devang Parekh, and Connie J. Chang-Hasnain  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 20887-20893 (2010)
http://dx.doi.org/10.1364/OE.18.020887


View Full Text Article

Enhanced HTML    Acrobat PDF (1977 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel model including the interference effect of master laser reflection is established for reflection-mode optical injection locking. This model sheds insight on the physical origin of some rather distinct but unexplained modulation characteristics of optical injection-locked vertical-cavity surface-emitting lasers (VCSELs), including data pattern inversion in on-off keying modulation, a large RF gain at low frequency, and an anomalous DC-suppression under small signal modulation, in specific locking conditions. Excellent agreement is obtained between the simulation and experiment results.

© 2010 OSA

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(260.3160) Physical optics : Interference

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 22, 2010
Revised Manuscript: September 1, 2010
Manuscript Accepted: September 12, 2010
Published: September 17, 2010

Citation
Weijian Yang, Peng Guo, Devang Parekh, and Connie J. Chang-Hasnain, "Reflection-mode optical injection locking," Opt. Express 18, 20887-20893 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-20-20887


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008). [CrossRef] [PubMed]
  2. X. Zhao, B. Zhang, L. Christen, D. Parekh, W. Hofmann, M. C. Amann, F. Koyama, A. E. Willner, and C. J. Chang-Hasnain, “Greatly increased fiber transmission distance with an optically injection-locked vertical-cavity surface-emitting laser,” Opt. Express 17(16), 13785–13791 (2009). [CrossRef] [PubMed]
  3. D. Parekh, B. Zhang, X. Zhao, Y. Yue, W. Hofmann, M. C. Amann, A. E. Willner, and C. J. Chang-Hasnain, “90-km single-mode fiber transmission of 10-Gb/s multimode VCSELs under optical injection locking,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuK7.
  4. L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech. 54(2), 788–796 (2006). [CrossRef]
  5. X. Zhao and C. J. Chang-Hasnain, “A new amplifier model for resonance enhancement of optically injection-locked lasers,” IEEE Photon. Technol. Lett. 20(6), 395–397 (2008). [CrossRef]
  6. E. K. Lau, H. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008). [CrossRef]
  7. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003). [CrossRef]
  8. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7(7), 709–711 (1995). [CrossRef]
  9. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985). [CrossRef]
  10. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982). [CrossRef]
  11. W. Yang, P. Guo, D. Parekh, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Physical origin of data pattern inversion in optical injection-locked VCSELs,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FTuW2.
  12. P. Guo, W. Yang, D. Parekh, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Anomalous modulation characteristics of optical injection-locked VCSELs,” in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD6.
  13. C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985). [CrossRef]
  14. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, and Y. Liu, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42, 976–977 (2006). [CrossRef]
  15. X. Wang, B. Faraji, W. Hofmann, M.-C. Amann, and L. Chrostowski, “Interference effects on the frequency response of injection-locked VCSELs,” in The 22nd IEEE International Semiconductor Laser Conference (Institute of Electrical and Electronics Engineers, New Jersey, 2010), poster P11.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited