OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 20939–20948

Theoretical investigation of fabrication-related disorders on the properties of subwavelength metal-dielectric-metal plasmonic waveguides

Changjun Min and Georgios Veronis  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 20939-20948 (2010)
http://dx.doi.org/10.1364/OE.18.020939


View Full Text Article

Enhanced HTML    Acrobat PDF (2277 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the effect of fabrication-related disorders on subwavelength metal-dielectric-metal plasmonic waveguides. We use a Monte Carlo method to calculate the roughness-induced excess attenuation coefficient with respect to a smooth waveguide. For small roughness height, the excess optical power loss due to disorder is small compared to the material loss in a smooth waveguide. However, for large roughness height, the excess attenuation increases rapidly with height and the propagation length of the optical mode is severely affected. We find that the excess attenuation is mainly due to reflection from the rough surfaces. However, for small roughness correlation lengths, enhanced absorption is the dominant loss mechanism due to disorder. We also find that the disorder attenuation due to reflection is approximately maximized when the power spectral density of the disordered surfaces at the Bragg spatial frequency is maximized. Finally, we show that increasing the modal confinement or decreasing the guide wavelength, increase the attenuation due to disorder.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.5770) Optics at surfaces : Roughness
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 30, 2010
Revised Manuscript: September 9, 2010
Manuscript Accepted: September 9, 2010
Published: September 17, 2010

Citation
Changjun Min and Georgios Veronis, "Theoretical investigation of fabrication-related disorders on the properties of subwavelength metal-dielectric-metal plasmonic waveguides," Opt. Express 18, 20939-20948 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-20-20939


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  3. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006). [CrossRef]
  4. S. A. Maier, Plasmonics: fundamentals and applications, (Springer, New York, 2007).
  5. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007). [CrossRef] [PubMed]
  6. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004). [CrossRef]
  7. G. Veronis and S. Fan, “Bends and splitters in subwavelength metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]
  8. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009). [CrossRef]
  9. D. M. Pozar, Microwave Engineering, (Wiley, New York, 1998).
  10. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  11. S. P. Morgan., “Effects of surface roughness on eddy current losses at microwave frequencies,” J. Appl. Phys. 20(4), 352–362 (1949). [CrossRef]
  12. M. V. Lukic and D. S. Filipovic, “Modeling of 3-D surface roughness effects with application to coaxial lines,” IEEE Trans. Microw. Theory Tech. 55(3), 518–525 (2007). [CrossRef]
  13. R. Ding, L. Tsang, and H. Braunisch, “Wave Propagation in a Randomly Rough Parallel-Plate Waveguide,” IEEE Trans. Microw. Theory Tech. 57(5), 1216–1223 (2009). [CrossRef]
  14. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988).
  15. J. A. Sánchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: Shape versus Anderson-localized resonances,” Phys. Rev. B 68(11), 113410 (2003). [CrossRef]
  16. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005). [CrossRef]
  17. A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, and H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48(30), 5683–5691 (2009). [CrossRef] [PubMed]
  18. V. D. Freilikher, and S. A. Gredeskul, “Localization of waves in media with one-dimensional disorder,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1996), V. XXX, pp. 137–203.
  19. A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62(8), 24–29 (2009). [CrossRef]
  20. F. M. Izrailev and N. M. Makarov, “Onset of delocalization in quasi-one-dimensional waveguides with correlated surface disorder,” Phys. Rev. B 67(11), 113402 (2003). [CrossRef]
  21. P. Lugan, A. Aspect, L. Sanchez-Palencia, D. Delande, B. Grémaud, C. A. Müller, and C. Miniatura, “One-dimensional Anderson localization in certain correlated random potentials,” Phys. Rev. A 80(2), 023605 (2009). [CrossRef]
  22. C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69(3), 731–808 (1997). [CrossRef]
  23. A. García-Martín, J. A. Torres, J. J. Sáenz, and M. Nieto-Vesperinas, “Transition from diffusive to localized regimes in surface corrugated optical waveguides,” Appl. Phys. Lett. 71(14), 1912–1914 (1997). [CrossRef]
  24. A. García-Martín, J. A. Torres, J. J. Sáenz, and M. Nieto-Vesperinas, “Intensity Distribution of Modes in Surface Corrugated Waveguides,” Phys. Rev. Lett. 80(19), 4165–4168 (1998). [CrossRef]
  25. J. A. Sánchez-Gil, V. Freilikher, I. Yurkevich, and A. A. Maradudin, “Coexistence of Ballistic Transport, Diffusion, and Localization in Surface Disordered Waveguides,” Phys. Rev. Lett. 80(5), 948–951 (1998). [CrossRef]
  26. F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD Technique for Rough Surface Scattering,” IEEE Trans. Antenn. Propag. 43(11), 1183–1191 (1995).
  27. E. I. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83(1), 78–92 (1988). [CrossRef]
  28. G. Veronis, and S. Fan, “Overview of Simulation Techniques for Plasmonic Devices,” in Surface Plasmon Nanophotonics, Mark L. Brongersma and Pieter G. Kik, ed. (Springer, 2007).
  29. E. D. Palik, Handbook of Optical Constants of Solids, (Academic, New York, 1985).
  30. J. Jin, The Finite Element Method in Electromagnetics, (Wiley, New York, 2002).
  31. S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103(6), 063903 (2009). [CrossRef] [PubMed]
  32. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
  33. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005). [CrossRef]
  34. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles, (John Wiley & Sons, Inc., New York, 1983).
  35. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005). [CrossRef] [PubMed]
  36. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25(9), 2511–2521 (2007). [CrossRef]
  37. T. Barwicz and H. A. Haus, “Three-Dimensional Analysis of Scattering Losses Due to Sidewall Roughness in Microphotonic Waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005). [CrossRef]
  38. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation Modes and Roughness Loss in High Index-Contrast Waveguides,” IEEE J. Sel. Top. Quant. 12(6), 1306–1321 (2006). [CrossRef]
  39. C. L. Holloway and E. F. Kuester, “Power Loss Associated with Conducting and Superconducting Rough Interfaces,” IEEE Trans. Microw. Theory Tech. 48(10), 1601–1610 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited