OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 20988–21002

Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models

Kai Liu, Yujie Lu, Jie Tian, Chenghu Qin, Xin Yang, Shouping Zhu, Xiang Yang, Quansheng Gao, and Dong Han  »View Author Affiliations

Optics Express, Vol. 18, Issue 20, pp. 20988-21002 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1730 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In vivo bioluminescence imaging (BLI) has played a more and more important role in biomedical research of small animals. Bioluminescence tomography (BLT) further translates the BLI optical information into three-dimensional bioluminescent source distribution, which could greatly facilitate applications in related studies. Although the diffusion approximation (DA) is one of the most widely-used forward models, higher-order approximations are still needed for in vivo small animal imaging. In this work, as a higher-order approximation theory, the performance of the simplified spherical harmonics approximation (SP N ) in BLT is evaluated thoroughly on heterogeneous mouse models. In the numerical validations, the SP N based results demonstrate better imaging quality compared with diffusion approximation heterogeneously under various source locations over wide optical domain. In what follows, heterogeneous experimental BLT reconstructions using in vivo mouse further evaluate the capability of the higher-order method for practical biomedical applications.

© 2010 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 19, 2010
Revised Manuscript: July 30, 2010
Manuscript Accepted: August 31, 2010
Published: September 20, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Jie Tian, Kai Liu, Yujie Lu, Chenghu Qin, Xin Yang, Shouping Zhu, Dong Han, Jinchao Feng, Xibo Ma, and Zhijun Chang, "Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models," Opt. Express 18, 20988-21002 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. . R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452,580–589 (2008). [CrossRef] [PubMed]
  2. . J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7,591–607 (2008). [CrossRef] [PubMed]
  3. . V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weisslder, “Looking and listening to light: the evolution of whole body photonic imaging,” Nat. Biotechnol. 23,313–320 (2005). [CrossRef] [PubMed]
  4. . R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9,123–128 (2003). [CrossRef] [PubMed]
  5. . B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of lightemitting probes,” J. Biomed. Opt. 6,432–440 (2001). [CrossRef] [PubMed]
  6. . G. Wang, W-X. Cong, K. Durairaj, X. Qian, H-O. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14,7801–7809 (2006), http://www. opticsinfobase.org/abstract.cfm?URI=oe-14-17-7801. [CrossRef] [PubMed]
  7. . S. R. Arridge, “Optical tomography in medical imaging,” Inv. Prob. 15,R41–R93 (1999). [CrossRef]
  8. . S. Chandrasekhar, Radiative Transfer, Clarendon, London (1950).
  9. . A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43,1285–1302 (1998). [CrossRef] [PubMed]
  10. . A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer: part 1. forward model,” J. Quant. Radiat. Spectrosc. Transfer 72,691–713 (2002). [CrossRef]
  11. . Z. Yuan, X-H. Hu and JiangH-B , “A higher order diffusion model for three-dimensional photon migration and image reconstruction in optical tomography,” Phys. Med. Biol. 54,65–88 (2009). [CrossRef]
  12. . K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading, MA (1967).
  13. . O. Dorn, “Transportłbacktransport method for optical tomography,” Inv. Prob. 14,1107–1130 (1998). [CrossRef]
  14. . H. B. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4,241–246 (1999), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-4-8-241. [CrossRef] [PubMed]
  15. . S. Wright, M. Schweiger, and S. R. Arridge, “Reconstruction in optical tomography using the PN approximations,” Meas. Sci. Technol. 18,79–86 (2007). [CrossRef]
  16. . M. Jiang and G. Wang, “Image reconstruction for bioluminescence tomography,” Proc. SPIE 5535,335–351 (2004). [CrossRef]
  17. . W-X. Cong, G. Wang, D. Kumar, Y. Liu,M. Jiang, L. V. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13,6756–6771 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?id=140930. [CrossRef] [PubMed]
  18. . G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys.Med. Biol. 50,4225–4241 (2005). [CrossRef] [PubMed]
  19. . A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging” Phys. Med. Biol. 50,5421–5441 (2005). [CrossRef] [PubMed]
  20. . N. V. Slavine,M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33, 61–68 (2006). [CrossRef] [PubMed]
  21. . Y-J. Lv, J. Tian, G. Wang,W-X. Cong, J. Luo,W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14,8211–8223 (2006), http://www.opticsinfobase. org/abstract.cfm?URI=oe-14-18-8211. [CrossRef] [PubMed]
  22. . H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M.S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31,365–367 (2006). [CrossRef] [PubMed]
  23. . G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5,351–363 (2006). [PubMed]
  24. . Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52,5569–5585 (2007). [CrossRef] [PubMed]
  25. . C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12,024007:1–12 (2007). [CrossRef]
  26. . J. Tian, J. Bai, X-P. Yan, S-L. Bao, Y-H. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. 27,48–57 (2008).
  27. . D. Hyde, R. Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-β plaques in a murine Alzheimer’s disease model,” NeuroImage 44,1304–1311 (2009). [CrossRef]
  28. . K. Liu, J. Tian, D. Liu, C-H. Qin, J-T. Liu, S-P. Zhu, Z-J. Chang, X. Yang, and M. Xu, “Spectrally resolved three dimension bioluminescence tomography with a level set strategy,” J. Opt. Soc. Amer. A 27,1413-1423 (2010). [CrossRef]
  29. . H. Dehghani, D. Delpy, and S. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44,2897–2906 (1999). [CrossRef]
  30. . A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220,441–470 (2006). [CrossRef]
  31. . M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using threedimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54,2493–2509 (2009). [CrossRef] [PubMed]
  32. . Y-J. Lu, A. Douraghy, H. B. Machado, D. Stout, J. Tian, H. Herschman, and A. F. Chatziioannou, “Spectrallyresolved bioluminescence tomography with the three-order simplified spherical harmonics approximation,” Phys. Med. Biol. 50,4225–4241 (2009).
  33. . V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20,470–478 (2001). [CrossRef] [PubMed]
  34. . X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49,N155–N163 (2004). [CrossRef] [PubMed]
  35. . Y-J. Lv, J. Tian, H. Li,W-X. Cong, G. Wang,W-X. Yang, C-H. Qin, andM. Xu, “Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation,” Phys. Med. Biol. 52,4497–4512 (2007). [CrossRef] [PubMed]
  36. . K. Liu, J. Tian, Y-J. Lu, C-H. Qin, S-P. Zhu, and X. Zhang, “A fast bioluminescent source localization method based on generalized graph cuts with mouse model validations,” Opt. Express 18,3732-3745 (2010), http: //www.opticsinfobase.org/abstract.cfm?uri=oe-18-4-3732. [CrossRef] [PubMed]
  37. . Y-J. Lu, H. B. Machado, A. Douraghy, D. Stout, H. Herschman and A. F. Chatziioannou, “Experimental bioluminescence tomography with fully parallel radiative-transfer-based reconstruction framework,” Opt. Express 17, 16681–16695 (2009), http://www.opticsinfobase.org/abstract.cfm?URI= oe-17-19-16681. [CrossRef] [PubMed]
  38. . S. C. Brenner and L. C. Scott, The mathematical Theory of Finite Element Methods, Springer-Verlag, New York (1994).
  39. . Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Trans. Patt. Anal. and Mach. Intell. 26,1124–1137 (2004). [CrossRef]
  40. . C-H. Qin, J. Tian, X. Yang, K. Liu, G-R. Yan, J-C. Feng, Y-J. Lv, and M. Xu, “Galerkin-based meshless methods for photon transport in the biological tissue,” Opt. Express 16,20317–20333 (2008), http: //www.opticsinfobase.org/abstract.cfm?URI=oe-16-25-20317. [CrossRef] [PubMed]
  41. . S-P. Zhu, J. Tian, G-R. Yan, C-H. Qin, and J-C. Feng, “Cone beam micro-CT system for small animal imaging and performance evaluation,” Int. J. Biomed. Imaging2009, doc. ID 960573 (2009). [CrossRef] [PubMed]
  42. . G-R. Yan, J. Tian, S-P. Zhu, Y-K. Dai, and C-H. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. X-Ray Sci. and Technol. 16,225–234 (2008).
  43. . S. A. Prahl, Oregon Medical Laser Clinic, 2001, http://omlc.ogi.edu/spectra/index.html.
  44. . H. Li, J. Tian, F-P. Zhu, W-X. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the monte carlo method,” Acad. Radiol. 11,1029–1038 (2005). [CrossRef]
  45. . S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding doubling method,” Appl. Opt. 32,559–568 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited