OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21038–21046

Alignment-free fabrication of a hybrid electro-optic polymer/ion-exchange glass coplanar modulator

Ismail Emre Araci, Roland Himmelhuber, Chris T. DeRose, J. D. Luo, A. K.-Y. Jen, R. A. Norwood, and N. Peyghambarian  »View Author Affiliations

Optics Express, Vol. 18, Issue 20, pp. 21038-21046 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (967 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hybrid electro-optic (EO) polymer phase modulator with a 6 μm coplanar electrode gap was realized on ion exchange glass substrates. The critical alignment steps which may be required for hybrid optoelectronic devices were eliminated with a simple alignment-free fabrication technique. The low loss adiabatic transition from glass to EO polymer waveguide was enabled by gray scale patterning of novel EO polymer, AJLY. Total insertion loss of 5 dB and electrode gap of 8 μm was obtained for an optimized device design. EO polymer poling at 135 °C and 75 V/μm was demonstrated for the first time on a phosphate glass substrate and was enabled by the sol-gel buffer layer.

© 2010 OSA

OCIS Codes
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.7360) Optoelectronics : Waveguide modulators
(130.2755) Integrated optics : Glass waveguides

ToC Category:

Original Manuscript: July 13, 2010
Revised Manuscript: September 6, 2010
Manuscript Accepted: September 9, 2010
Published: September 20, 2010

Ismail Emre Araci, Roland Himmelhuber, Chris T. DeRose, J. D. Luo, A. K.-Y. Jen, R. A. Norwood, and N. Peyghambarian, "Alignment-free fabrication of a hybrid electro-optic polymer/ion-exchange glass coplanar modulator," Opt. Express 18, 21038-21046 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Eldada, “Optical communication components,” Rev. Sci. Instrum. 75(3), 575–593 (2004). [CrossRef]
  2. D. T. Chen, H. R. Fetterman, A. T. Chen, W. H. Steier, L. R. Dalton, W. S. Wang, Y. Q. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997). [CrossRef]
  3. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000). [CrossRef]
  4. W. S. Wang, D. T. Chen, H. R. Fetterman, Y. Q. Shi, W. H. Steier, L. R. Dalton, “40-GHz polymer electrooptic phase modulators,” IEEE Photon. Technol. Lett. 7(6), 638–640 (1995). [CrossRef]
  5. H. Zhong, T. Suning, A. Dechang, S. Lin, L. Xuejun, S. Zan, Z. Qingjun, and C. R. T., “High-speed traveling-wave electrodes for polymeric electro-optic modulators,” (Proc. of SPIE, 1999), p. 354.
  6. R. Song, H. C. Song, W. H. Steier, C. H. Cox, “Analysis and demonstration of Mach-Zehnder polymer modulators using in-plane coplanar waveguide structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007). [CrossRef]
  7. S. W. Ahn, W. H. Steier, Y. H. Kuo, M. C. Oh, H. J. Lee, C. Zhang, H. R. Fetterman, “Integration of electro-optic polymer modulators with low-loss fluorinated polymer waveguides,” Opt. Lett. 27(23), 2109–2111 (2002). [CrossRef]
  8. C. T. DeRose, D. Mathine, Y. Enami, R. A. Norwood, J. Luo, A. K. Y. Jen, N. Peyghambarian, “Electrooptic polymer modulator with single-mode to multimode waveguide transitions,” IEEE Photon. Technol. Lett. 20(12), 1051–1053 (2008). [CrossRef]
  9. H. Zhang, M. C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at both 1310 and 1550 nm,” Appl. Phys. Lett. 78(20), 3136–3138 (2001). [CrossRef]
  10. S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, R. Kostuk, J. Castro, D. Geraghty, “Recent advances in ion exchanged glass waveguides and devices,” Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B 47, 110–120 (2006).
  11. D. Bosc, P. Benech, T. Smail, and A. Morand, “Hybrid integrated electro-optical modulator of the pockels effect type,” in Google Patents, U. S. Patent, ed. (France Telecom, France, 2001).
  12. G. Della Valle, A. Festa, G. Sorbello, K. Ennser, C. Cassagnetes, D. Barbier, S. Taccheo, “Single-mode and high power waveguide lasers fabricated by ion-exchange,” Opt. Express 16(16), 12334–12341 (2008). [CrossRef] [PubMed]
  13. Y. D. Hu, S. B. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, N. Peyghambarian, “Performance of high-concentration Er3+-Yb3+-codoped phosphate fiber amplifiers,” IEEE Photon. Technol. Lett. 13(7), 657–659 (2001). [CrossRef]
  14. Y. Enami, P. Poyhonen, D. L. Mathine, A. Bashar, P. Madasamy, S. Honkanen, B. Kippelen, N. Peyghambarian, S. R. Marder, A. K. Y. Jen, J. Wu, “Poling of soda-lime glass for hybrid glass/polymer electro-optic modulators,” Appl. Phys. Lett. 76(9), 1086–1088 (2000). [CrossRef]
  15. M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, W. Volksen, “Orientational decay in poled second-order nonlinear optical guest-host polymers: Temperature dependence and effects of poling geometry,” J. Appl. Phys. 73(12), 8471–8479 (1993). [CrossRef]
  16. I. E. Araci, R. A. Norwood, J. D. Luo, A. K.-Y. Jen, and P. N, “Alignment-free Fabrication of a Hybrid Electro-Optic Polymer Modulator Platform,” in Integrated Photonics Research (Monterey, CA, 2010).
  17. J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schulzgen, N. Peyghambarian, S. Sen, N. F. Borrelli, “Ion-exchanged waveguides in glass doped with PbS quantum dots,” Appl. Phys. Lett. 85(25), 6098–6100 (2004). [CrossRef]
  18. P. Madasamy, G. N. Conti, P. Poyhonen, Y. Hu, M. M. Morrell, D. F. Geraghty, S. Honkanen, N. Peyghambarian, “Waveguide distributed Bragg reflector laser arrays in erbium doped glass made by dry Ag film ion exchange,” Opt. Eng. 41(5), 1084–1086 (2002). [CrossRef]
  19. P. Madasamy, S. Honkanen, D. F. Geraghty, N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332–1334 (2003). [CrossRef]
  20. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007). [CrossRef]
  21. A. S. Sudbo, “Numerically stable formulation of the transverse resonance method for vector mode-field calculations in dielectric wave-guides,” IEEE Photon. Technol. Lett. 5(3), 342–344 (1993). [CrossRef]
  22. O. Soppera, P. J. Moreira, P. V. S. Marques, A. P. Leite, “Influence of temperature and environment humidity on the transmission spectrum of sol-gel hybrid channel waveguides,” Opt. Commun. 271(2), 430–435 (2007). [CrossRef]
  23. C. T. DeRose, R. Himmelhuber, D. Mathine, R. A. Norwood, J. Luo, A. K. Y. Jen, N. Peyghambarian, “High Deltan strip-loaded electro-optic polymer waveguide modulator with low insertion loss,” Opt. Express 17(5), 3316–3321 (2009). [CrossRef] [PubMed]
  24. S. Yliniemi, J. Albert, Q. Wang, S. Honkanen, “UV-exposed Bragg gratings for laser applications in silver-sodium ion-exchanged phosphate glass waveguides,” Opt. Express 14(7), 2898–2903 (2006). [CrossRef] [PubMed]
  25. C. C. Teng, H. T. Man, “Simple reflection technique for measuring the electrooptic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990). [CrossRef]
  26. D. S. E. Chemla, Nonlinear optical properties of Organic Molecules and Crystals (1987).
  27. J. D. Luo, X. H. Zhou, A. K. Y. Jen, “Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials,” J. Mater. Chem. 19(40), 7410–7424 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited