OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21053–21061

Optical trapping and propulsion of red blood cells on waveguide surfaces

Balpreet Singh Ahluwalia, Peter McCourt, Thomas Huser, and Olav Gaute Hellesø  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 21053-21061 (2010)
http://dx.doi.org/10.1364/OE.18.021053


View Full Text Article

Enhanced HTML    Acrobat PDF (2057 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied optical trapping and propulsion of red blood cells in the evanescent field of optical waveguides. Cell propulsion is found to be highly dependent on the biological medium and serum proteins the cells are submerged in. Waveguides made of tantalum pentoxide are shown to be efficient for cell propulsion. An optical propulsion velocity of up to 6 µm/s on a waveguide with a width of ~6 µm is reported. Stable optical trapping and propulsion of cells during transverse flow is also reported.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.7010) Lasers and laser optics : Laser trapping
(160.3130) Materials : Integrated optics materials
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: June 14, 2010
Revised Manuscript: August 2, 2010
Manuscript Accepted: August 3, 2010
Published: September 21, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
Balpreet Singh Ahluwalia, Peter McCourt, Thomas Huser, and Olav Gaute Hellesø, "Optical trapping and propulsion of red blood cells on waveguide surfaces," Opt. Express 18, 21053-21061 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-20-21053


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987). [CrossRef] [PubMed]
  2. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997). [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  4. P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro-spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc 38(9), 1082–1088 (2007). [CrossRef]
  5. K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005). [CrossRef] [PubMed]
  6. J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006). [CrossRef] [PubMed]
  7. R. Applegate, J. Squier, T. Vestad, J. Oakey, and D. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004). [CrossRef] [PubMed]
  8. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996). [CrossRef] [PubMed]
  9. K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239(4-6), 227–235 (2004). [CrossRef]
  10. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009). [CrossRef] [PubMed]
  11. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007). [CrossRef] [PubMed]
  12. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005). [CrossRef] [PubMed]
  13. D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009). [CrossRef]
  14. B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21(19), 1408–1410 (2009). [CrossRef]
  15. B. S. Ahluwalia, O. G. Hellesø, A. Z. Subramanian, J. Chen, J. S. Wilkinson, and X. Chen, “Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting,” Proc. SPIE 7613, 76130R (2010). [CrossRef]
  16. H. Jaising, K. Grujić, and O. G. H. Tomita, “Simulations and Velocity Measurements for a Microparticle in an Evanescent Field,” Opt. Rev. 12(1), 4–6 (2005). [CrossRef]
  17. H. Y. Jaising and O. G. Hellesø, “Radiation forces on a Mie particle in the evanescent field of an optical waveguide,” Opt. Commun. 246(4-6), 373–383 (2005). [CrossRef]
  18. S. Gaugiran, S. Gétin, J. M. Fedeli, and J. Derouard, “Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces,” Opt. Express 15(13), 8146–8156 (2007). [CrossRef] [PubMed]
  19. D. Néel, S. Gétin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Hellesø, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009). [CrossRef]
  20. G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proc. Natl. Acad. Sci. U.S.A. 96(2), 471–476 (1999). [CrossRef] [PubMed]
  21. J. N. George, R. I. Weed, and C. F. Reed, “Adhesion of human erythrocytes to glass: the nature of the interaction and the effect of serum and plasma,” J. Cell. Physiol. 77(1), 51–59 (1971). [CrossRef] [PubMed]
  22. G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell Sci. 87(Pt 4), 519–523 (1987). [PubMed]
  23. E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972). [CrossRef] [PubMed]
  24. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999). [CrossRef] [PubMed]
  25. M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003). [CrossRef]
  26. A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3(1), 67–73 (2006). [CrossRef] [PubMed]
  27. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behaviour of erythrocytes in an optical trapping system,” Opt. Express 7(13), 533–539 (2000). [CrossRef] [PubMed]
  28. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  29. M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3 Pt 1), 031108 (2004). [CrossRef] [PubMed]
  30. K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004). [CrossRef] [PubMed]
  31. K. Grujic and O. G. Hellesø, “Dielectric microsphere manipulation and chain assembly by counter-propagating waves in a channel waveguide,” Opt. Express 15(10), 6470–6477 (2007). [CrossRef] [PubMed]
  32. S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009). [CrossRef]
  33. B. Hansen, J. Melkko, and B. Smedsrød, “Serum is a rich source of ligands for the scavenger receptor of hepatic sinusoidal endothelial cells,” Mol. Cell. Biochem. 229(1-2), 63–72 (2002). [CrossRef] [PubMed]
  34. K. Grujic, O. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (3366 KB)     
» Media 2: MOV (3684 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited