OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21074–21082

Characterizing the origin of autofluorescence in human esophageal epithelium under ultraviolet excitation

Bevin Lin, Shiro Urayama, Ramez M. G. Saroufeem, Dennis L. Matthews, and Stavros G. Demos  »View Author Affiliations

Optics Express, Vol. 18, Issue 20, pp. 21074-21082 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1325 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The autofluorescence under ultraviolet excitation arising from normal squamous and columnar esophageal mucosa is investigated using multispectral microscopy. The results suggest that the autofluorescence signal arises from the superficial tissue layer due to the short penetration depth of the ultraviolet excitation. As a result, visualization of esophageal epithelial cells and their organization can be attained using wide-field autofluorescence microscopy. Our results show tryptophan to be the dominant source of emission under 266 nm excitation, while emission from NADH and collagen are dominant under 355 nm excitation. The analysis of multispectral microscopy images reveals that tryptophan offers the highest image contrast due to its non-uniform distribution in the sub-cellular matrix. This technique can simultaneously provide functional and structural imaging of the microstructure using only the intrinsic tissue fluorophores.

© 2010 OSA

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.2680) Medical optics and biotechnology : Gastrointestinal
(170.4730) Medical optics and biotechnology : Optical pathology
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(260.7190) Physical optics : Ultraviolet
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 1, 2010
Revised Manuscript: August 18, 2010
Manuscript Accepted: September 8, 2010
Published: September 21, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Bevin Lin, Shiro Urayama, Ramez M. G. Saroufeem, Dennis L. Matthews, and Stavros G. Demos, "Characterizing the origin of autofluorescence in human esophageal epithelium under ultraviolet excitation," Opt. Express 18, 21074-21082 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. V. Kantsevoy, D. G. Adler, J. D. Conway, D. L. Diehl, F. A. Farraye, V. Kaul, S. R. Kethu, R. S. Kwon, P. Mamula, S. A. Rodriguez, W. M. Tierney, and ASGE Technology Committee, “Confocal laser endomicroscopy,” Gastrointest. Endosc. 70(2), 197–200 (2009). [CrossRef] [PubMed]
  2. M. B. Wallace and P. Fockens, “Probe-based confocal laser endomicroscopy,” Gastroenterology 136(5), 1509–1513 (2009). [CrossRef] [PubMed]
  3. P. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. Du, A. Wu, P. Sahbaie, J. Crawford, A. Lowe, and C. Contag, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nature 200, 8 (2007).
  4. T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-resolution imaging in Barrett’s esophagus: a novel, low-cost endoscopic microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008). [CrossRef] [PubMed]
  5. J. D. Rogers, S. Landau, T. S. Tkaczyk, M. R. Descour, M. S. Rahman, R. Richards-Kortum, A. H. Kärkäinen, and T. Christenson, “Imaging performance of a miniature integrated microendoscope,” J. Biomed. Opt. 13(5), 054020 (2008). [CrossRef] [PubMed]
  6. K. Gono, “Multifunctional endoscopic imaging system for support of early cancer diagnosis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 62–69 (2008). [CrossRef]
  7. D. Li, W. Zheng, and J. Y. Qu, “Imaging of epithelial tissue in vivo based on excitation of multiple endogenous nonlinear optical signals,” Opt. Lett. 34(18), 2853–2855 (2009). [CrossRef] [PubMed]
  8. W. L. Rice, D. L. Kaplan, and I. Georgakoudi, “Quantitative biomarkers of stem cell differentiation based on intrinsic two-photon excited fluorescence,” J. Biomed. Opt. 12(6), 060504 (2007). [CrossRef]
  9. B. Lin, S. Urayama, R. M. G. Saroufeem, D. L. Matthews, and S. G. Demos, “Real-time microscopic imaging of esophageal epithelial disease with autofluorescence under ultraviolet excitation,” Opt. Express 17(15), 12502–12509 (2009). [CrossRef] [PubMed]
  10. J. Meier, D. Farwell, Y. Sun, N. Hatami, L. Marcu, and H. Xie, “Fluorescence spectroscopy as a diagnostic tool in HNSCC,” Otolaryngol. Head Neck Surg. 141(3), P51–P52 (2009). [CrossRef]
  11. S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11(2), 165–181 (2006). [CrossRef] [PubMed]
  12. T. J. Pfefer, D. Y. Paithankar, J. M. Poneros, K. T. Schomacker, and N. S. Nishioka, “Temporally and spectrally resolved fluorescence spectroscopy for the detection of high grade dysplasia in Barrett’s esophagus,” Lasers Surg. Med. 32(1), 10–16 (2003). [CrossRef] [PubMed]
  13. B. Mayinger, P. Horner, M. Jordan, C. Gerlach, T. Horbach, W. Hohenberger, and E. G. Hahn, “Endoscopic fluorescence spectroscopy in the upper GI tract for the detection of GI cancer: initial experience,” Am. J. Gastroenterol. 96(9), 2616–2621 (2001). [CrossRef] [PubMed]
  14. W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003). [CrossRef] [PubMed]
  15. C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010). [CrossRef] [PubMed]
  16. R. R. Alfano, B. B. Das, J. Cleary, R. Prudente, and E. J. Celmer, “Light sheds light on cancer--distinguishing malignant tumors from benign tissues and tumors,” Bull. N. Y. Acad. Med. 67(2), 143–150 (1991). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited