OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21090–21099

Parallel direct laser writing in three dimensions with spatially dependent aberration correction

Alexander Jesacher and Martin J. Booth  »View Author Affiliations

Optics Express, Vol. 18, Issue 20, pp. 21090-21099 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (977 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a hologram design process which aims at reducing aberrations in parallel three-dimensional direct laser writing applications. One principle of the approach is to minimise the diffractive power of holograms while retaining the degree of parallelisation. This reduces focal distortion caused by chromatic aberration. We address associated problems such as the zero diffraction order and aberrations induced by a potential refractive index mismatch between the immersion medium of the microscope objective and the fabrication substrate. Results from fabrication in diamond, fused silica and lithium niobate are presented.

© 2010 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.1000) Holography : Aberration compensation
(140.3390) Lasers and laser optics : Laser materials processing
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Laser Microfabrication

Original Manuscript: August 10, 2010
Revised Manuscript: September 13, 2010
Manuscript Accepted: September 16, 2010
Published: September 21, 2010

Alexander Jesacher and Martin J. Booth, "Parallel direct laser writing in three dimensions with spatially dependent aberration correction," Opt. Express 18, 21090-21099 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006). [CrossRef]
  2. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006). [CrossRef] [PubMed]
  3. G. Della Valle, R. Osellame and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A 11, 013001 (2009). [CrossRef]
  4. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17, 3531–3542 (2009). [CrossRef] [PubMed]
  5. M. Pospiech,M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17, 3555–3563 (2009). [CrossRef] [PubMed]
  6. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 x 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18, 12136–12143 (2010). [CrossRef] [PubMed]
  7. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543–546 (2009). [CrossRef]
  8. Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction,” Small 5, 1144–1148 (2009). [PubMed]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. v. Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513 (2009). [CrossRef] [PubMed]
  10. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997). [CrossRef] [PubMed]
  11. K. S. Lee, D. Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications”, Polym. Adv. Technol. 17, 72–82 (2006). [CrossRef]
  12. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 1908–1915 (2004). [CrossRef] [PubMed]
  13. J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005). [CrossRef]
  14. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 1705–1707 (2006). [CrossRef] [PubMed]
  15. M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka,“Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008). [CrossRef]
  16. G. Mınguez-Vega, J. Lancis, J. Caraquitena, V. Torres-Company, and P. Andres, “High spatiotemporal resolution in multifocal processing with femtosecond laser pulses,” Opt. Lett. 31, 2631–2633 (2006). [CrossRef] [PubMed]
  17. D. Palima and V. Ricardo Daria, “Holographic projection of arbitrary light patterns with a suppressed zero-order beam,” Appl. Opt. 46, 4197–4201 (2007). [CrossRef] [PubMed]
  18. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227-246 (1972).
  19. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007). [CrossRef] [PubMed]
  20. J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt. 33, 6879-6884 (1994). [CrossRef] [PubMed]
  21. P. Torok, P. Varga, Z. Laczik and G. R. Booker “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–331 (1995). [CrossRef]
  22. M. J. Booth, M. A. A. Neil and T. Wilson, “Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media,” J. Microsc. 192, 90–98 (1998). [CrossRef]
  23. S. Stallinga, “Light distribution close to focus in biaxially birefringent media,” J. Opt. Soc. Am. A 21, 1785-1798 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited