OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21111–21120

A comprehensive approach to deal with instrumental optical aberrations effects in high-accuracy photon's orbital angular momentum spectrum measurements

Néstor Uribe-Patarroyo, Alberto Alvarez-Herrero, and Tomás Belenguer  »View Author Affiliations

Optics Express, Vol. 18, Issue 20, pp. 21111-21120 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With the current and upcoming applications of beams carrying orbital angular momentum (OAM), there will be the need to generate beams and measure their OAM spectrum with high accuracy. The instrumental OAM spectrum distortion is connected to the effect of its optical aberrations on the OAM content of the beams that the instrument creates or measures. Until now, the effect of the well-known Zernike aberrations has been studied partially, assuming vortex beams with trivial radial phase components. However, the traditional Zernike polynomials are not best suitable when dealing with vortex beams, as their OAM spectrum is highly sensitive to some Zernike terms, and completely insensitive to others. We propose the use of a new basis, the OAM-Zernike basis, which consists of the radial aberrations as described by radial Zernike polynomials and of the azimuthal aberrations described in the OAM basis. The traditional tools for the characterization of aberrations of optical instruments can be used, and the results translated to the new basis. This permits the straightforward calculation of the effect of any optical system, such as an OAM detection stage, on the OAM spectrum of an incoming beam. This knowledge permits to correct, a posteriori, the effect of instrumental OAM spectrum distortion on the measured spectra. We also found that the knowledge of the radial aberrations is important, as they affect the efficiency of the detection, and in some cases its accuracy. In this new framework, we study the effect of aberrations in common OAM detection methods, and encourage the characterization of those systems using this approach.

© 2010 Optical Society of America

OCIS Codes
(350.5030) Other areas of optics : Phase
(080.1005) Geometric optics : Aberration expansions
(080.4865) Geometric optics : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

Original Manuscript: April 26, 2010
Revised Manuscript: June 9, 2010
Manuscript Accepted: June 17, 2010
Published: September 22, 2010

Néstor Uribe-Patarroyo, Alberto Alvarez-Herrero, and Tomás Belenguer, "A comprehensive approach to deal with instrumental optical aberrations effects in high-accuracy photon’s orbital angular momentum spectrum measurements," Opt. Express 18, 21111-21120 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Molina-Terriza, J. P. Torres, and L. Torner, "Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum," Phys. Rev. Lett. 88, 013601 (2002). [CrossRef] [PubMed]
  2. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001). [CrossRef]
  3. J. Lin, X.-C. Yuan, S. H. Tao, and R. E. Burge, "Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states," Appl. Opt. 46, 4680-4685 (2007). [CrossRef] [PubMed]
  4. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, "Free-space information transfer using light beams carrying orbital angular momentum," Opt. Express 12, 5448-5456 (2004). [CrossRef] [PubMed]
  5. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1995). [CrossRef] [PubMed]
  6. S. Franke-Arnold, L. Allen, and M. Padgett, "Advances in optical angular momentum," Laser Photonics Rev. 2, 299-313 (2008). [CrossRef]
  7. G. A. Swartzlander, Jr., "Peering into darkness with a vortex spatial filter," Opt. Lett. 26, 497-499 (2001). [CrossRef]
  8. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Wavefront correction of spatial light modulators using an optical vortex image," Opt. Express 15, 5801-5808 (2007). [CrossRef] [PubMed]
  9. G. A. Tyler, and R. W. Boyd, "Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum," Opt. Lett. 34, 142-144 (2009). [CrossRef] [PubMed]
  10. G. Gbur, and R. K. Tyson, "Vortex beam propagation through atmospheric turbulence and topological charge conservation," J. Opt. Soc. Am. A 25, 225-230 (2008). [CrossRef]
  11. C. Paterson, "Atmospheric Turbulence and Orbital Angular Momentum of Single Photons for Optical Communication," Phys. Rev. Lett. 94, 153901 (2005). [CrossRef] [PubMed]
  12. Z. Yi-Xin and C. Ji, "Effects of turbulent aberrations on probability distribution of orbital angular momentum for optical communication," Chin. Phys. Lett. 26, 074220 (4pp) (2009). [CrossRef]
  13. C. Jenkins, "Optical vortex coronagraphs on ground-based telescopes," Mon. Not. R. Astron. Soc. 384, 515-524 (2008). [CrossRef]
  14. B. R. Boruah, and M. A. Neil, "Susceptibility to and correction of azimuthal aberrations in singular light beams," Opt. Express 14, 10377-10385 (2006). [CrossRef] [PubMed]
  15. E. Compain, S. Poirier, and B. Drevillon, "General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers," Appl. Opt. 38, 3490-3502 (1999). [CrossRef]
  16. H. G. Tompkins, and E. A. Irene, eds., Handbook of Ellipsometry (Springer, Berlin, 2005). [CrossRef]
  17. N. Uribe-Patarroyo, A. Alvarez-Herrero, and T. Belenguer, "Measurement of the quantum superposition state of an imaging ensemble of photons prepared in orbital angular momentum states using a phase-diversity method," Phys. Rev. A 81, 053822 (2010). [CrossRef]
  18. J. C. Wyant, and K. Creath, "Basic Wavefront Aberration Theory for Optical Metrology," in "Applied Optics and Optical Engineering, Volume XI,", vol. 11, R. R. Shannon & J. C. Wyant, ed. (1992), vol. 11, pp. 27-39.
  19. M. Born, and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Pergamon Press, New York, 1959). [PubMed]
  20. W. Swantner, and W. W. Chow, "Gram-schmidt orthonormalization of Zernike polynomials for general aperture shapes," Appl. Opt. 33, 1832-1837 (1994). [CrossRef] [PubMed]
  21. N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, "Laser beams with phase singularities," Opt. Quantum Electron. 24, S951-S962 (1992). [CrossRef]
  22. S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, and M. Padgett, "Uncertainty principle for angular position and angular momentum," N. J. Phys. 6, 103 (2004). [CrossRef]
  23. J. W. Goodman, Introduction to Fourier optics (Roberts and Co. Publishers, Englewood, CO, 2005), 3rd ed.
  24. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, "Measuring the Orbital Angular Momentum of a Single Photon," Phys. Rev. Lett. 88, 257901 (2002). [CrossRef] [PubMed]
  25. G. C. G. Berkhout, and M. W. Beijersbergen, "Using a multipoint interferometer to measure the orbital angular momentum of light in astrophysics," J. Opt. A, Pure Appl. Opt. 11, 094021 (2009). [CrossRef]
  26. N. Uribe-Patarroyo, A. Alvarez-Herrero, A. López Ariste, A. Asensio Ramos, T. Belenguer, R. Manso Sainz, C. LeMen, and B. Gelly, "Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations," (unpublished).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited