OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21198–21203

Laser fabrication of 2D and 3D metal nanoparticle structures and arrays

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov  »View Author Affiliations

Optics Express, Vol. 18, Issue 20, pp. 21198-21203 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (4821 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel method for fabrication of 2D and 3D metal nanoparticle structures and arrays is proposed. This technique is based on laser-induced transfer of molten metal nanodroplets from thin metal films. Metal nanoparticles are produced by solidification of these nanodroplets. The size of the transferred nanoparticles can be controllably changed in the range from 180 nm to 1500 nm. Several examples of complex 2D and 3D microstructures generated form gold nanoparticles are demonstrated.

© 2010 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.3900) Materials : Metals
(240.0310) Optics at surfaces : Thin films
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

Original Manuscript: June 30, 2010
Revised Manuscript: July 28, 2010
Manuscript Accepted: September 3, 2010
Published: September 22, 2010

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, "Laser fabrication of 2D and 3D metal nanoparticle structures and arrays," Opt. Express 18, 21198-21203 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003). [CrossRef] [PubMed]
  2. J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008). [CrossRef]
  3. K. Li, X. Li, M. I. Stockman, and D. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005). [CrossRef]
  4. M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008). [CrossRef]
  5. C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229(2), 281–286 (2008). [CrossRef] [PubMed]
  6. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  7. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005). [CrossRef] [PubMed]
  8. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35(7), 956–958 (2010). [CrossRef] [PubMed]
  9. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]
  10. A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005). [CrossRef] [PubMed]
  11. I. P. Radko, A. B. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Refracting surface plasmon polaritons with nanoparticle arrays,” Opt. Express 16(6), 3924–3930 (2008). [CrossRef] [PubMed]
  12. C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, “Laser-fabricated dielectric optical components for surface plasmon polaritons,” Opt. Lett. 31(9), 1307–1309 (2006). [CrossRef] [PubMed]
  13. R. Kiyan, C. Reinhardt, S. Passinger, A. L. Stepanov, A. Hohenau, J. R. Krenn, and B. N. Chichkov, “Rapid prototyping of optical components for surface plasmon polaritons,” Opt. Express 15(7), 4205–4215 (2007). [CrossRef] [PubMed]
  14. A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309(5743), 2043–2045 (2005). [CrossRef] [PubMed]
  15. J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, and P. Ziemann, “Jumping nanodroplets: a new route towards metallic nano-particles,” Appl. Phys., A Mater. Sci. Process. 93(2), 415–419 (2008). [CrossRef]
  16. R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002). [CrossRef]
  17. Th. Schimmel, H. v. Löhneysen, Ch. Obermair, and M. Barczewski, Nanotechnology. Physics, Chemistry, and Biology of Functional Nanostructures (Landesstiftung Baden-Wüttemberg gGmbH, Karlsruhe, 2008).
  18. G. Zhang, D. Wang, and H. Möhwald, “Ordered binary arrays of Au nanoparticles derived from colloidal lithography,” Nano Lett. 7(1), 127–132 (2007). [CrossRef] [PubMed]
  19. G. Zhang and D. Wang, “Colloidal lithography--the art of nanochemical patterning,” Chem. Asian J. 4(2), 236–245 (2009). [CrossRef]
  20. M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009). [CrossRef] [PubMed]
  21. G. Zhang, J. Zhang, G. Xie, Z. Liu, and H. Shao, “Cicada wings: a stamp from nature for nanoimprint lithography,” Small 2(12), 1440–1443 (2006). [CrossRef] [PubMed]
  22. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009). [CrossRef] [PubMed]
  23. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008). [CrossRef]
  24. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009). [CrossRef]
  25. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009). [CrossRef]
  26. A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), B130–B138 (2009). [CrossRef]
  27. D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005). [CrossRef]
  28. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006). [CrossRef]
  29. L. Yang, C.- Wang, X.- Ni, Z.- Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006). [CrossRef]
  30. A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008). [CrossRef]
  31. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 94(2), 221–230 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited