OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21204–21218

Designs for high-efficiency electrically pumped photonic nanowire single-photon sources

Niels Gregersen, Torben Roland Nielsen, Jesper Mørk, Julien Claudon, and Jean-Michel Gérard  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 21204-21218 (2010)
http://dx.doi.org/10.1364/OE.18.021204


View Full Text Article

Enhanced HTML    Acrobat PDF (5276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and analyze three electrically-pumped nanowire single-photon source structures, which achieve output efficiencies of more than 80%. These structures are based on a quantum dot embedded in a photonic nanowire with carefully tailored ends and optimized contact electrodes. Contrary to conventional cavity-based sources, this non-resonant approach provides broadband spontaneous emission control and features an improved fabrication tolerance towards surface roughness and imperfections. Using an element-splitting approach, we analyze the various building blocks of the designs with respect to realistic variations of the experimental fabrication parameters.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(140.3300) Lasers and laser optics : Laser beam shaping
(260.3910) Physical optics : Metal optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: July 1, 2010
Revised Manuscript: September 14, 2010
Manuscript Accepted: September 18, 2010
Published: September 22, 2010

Citation
Niels Gregersen, Torben Roland Nielsen, Jesper Mørk, Julien Claudon, and Jean-Michel Gérard, "Designs for high-efficiency electrically pumped photonic nanowire single-photon sources," Opt. Express 18, 21204-21218 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-20-21204


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007). [CrossRef]
  2. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002). [CrossRef]
  3. T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008). [CrossRef]
  4. T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008). [CrossRef]
  5. A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006). [CrossRef]
  6. C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010). [CrossRef] [PubMed]
  7. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010). [CrossRef]
  8. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998). [CrossRef]
  9. E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001). [CrossRef]
  10. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002). [CrossRef] [PubMed]
  11. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007). [CrossRef]
  12. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006). [CrossRef] [PubMed]
  13. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  14. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007). [CrossRef] [PubMed]
  15. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002). [CrossRef]
  16. W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002). [CrossRef]
  17. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008). [CrossRef]
  18. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009). [CrossRef]
  19. A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009). [CrossRef]
  20. U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009). [CrossRef]
  21. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995). [CrossRef] [PubMed]
  22. G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007). [CrossRef] [PubMed]
  23. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008). [CrossRef] [PubMed]
  24. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009). [CrossRef] [PubMed]
  25. V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75(20), 205437 (2007). [CrossRef]
  26. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009). [CrossRef] [PubMed]
  27. A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006). [CrossRef]
  28. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010). [CrossRef]
  29. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010). [CrossRef] [PubMed]
  30. H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975). [CrossRef]
  31. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000). [CrossRef]
  32. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983). [CrossRef] [PubMed]
  33. C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996). [CrossRef]
  34. T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007). [CrossRef]
  35. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt. 21(6), 1069–1072 (1982). [CrossRef] [PubMed]
  36. Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).
  37. I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008). [CrossRef] [PubMed]
  38. N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008). [CrossRef] [PubMed]
  39. C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008). [CrossRef]
  40. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001). [CrossRef]
  41. N. Gregersen and J. Mørk, “An Improved Perfectly Matched Layer for the Eigenmode Expansion Technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008). [CrossRef]
  42. N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007). [CrossRef]
  43. M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich, “Dependencies of micro-pillar cavity quality factors calculated with finite element methods,” Opt. Express 17(2), 1144–1158 (2009). [CrossRef] [PubMed]
  44. Y. Zhang and M. Lončar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34(7), 902–904 (2009). [CrossRef] [PubMed]
  45. D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007). [CrossRef]
  46. R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008). [CrossRef] [PubMed]
  47. A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009). [CrossRef]
  48. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004). [CrossRef] [PubMed]
  49. K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited