OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21225–21237

Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy

Nadine Gröner, Jérémie Capoulade, Christoph Cremer, and Malte Wachsmuth  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 21225-21237 (2010)
http://dx.doi.org/10.1364/OE.18.021225


View Full Text Article

Enhanced HTML    Acrobat PDF (1217 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively. As an alternative to FCS, spatially resolved measurements of mobilities can be implemented using a CLSM by utilizing the spatio-temporal information inscribed into the image by the scan process, referred to as raster image correlation spectroscopy (RICS). Here we present and discuss an extended approach, multiple scan speed image correlation spectroscopy (msICS), which benefits from the advantages of RICS, i.e. the use of widely available instrumentation and the extraction of spatially resolved mobility information, without the need of a priori knowledge of diffusion properties. In addition, msICS covers a broad dynamic range, generates correlation data comparable to FCS measurements, and allows to derive two-dimensional maps of diffusion coefficients. We show the applicability of msICS to fluorophores in solution and to free EGFP in living cells.

© 2010 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(180.5810) Microscopy : Scanning microscopy
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Microscopy

History
Original Manuscript: July 13, 2010
Manuscript Accepted: August 11, 2010
Published: September 22, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
Nadine Gröner, Jérémie Capoulade, Christoph Cremer, and Malte Wachsmuth, "Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy," Opt. Express 18, 21225-21237 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-20-21225


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974). [CrossRef]
  2. D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974). [CrossRef] [PubMed]
  3. D. A. Bulseco, D. E. Wolf, S. Greenfield, and E. W. David, “Fluorescence Correlation Spectroscopy: Molecular Complexing in Solution and in Living Cells,” in Digital Microscopy, 3rd Edition (Academic Press, 2007), pp. 525–559.
  4. D. Grünwald, M. C. Cardoso, H. Leonhardt, and V. Buschmann, “Diffusion and binding properties investigated by Fluorescence Correlation Spectroscopy (FCS),” Curr. Pharm. Biotechnol. 6(5), 381–386 (2005). [CrossRef] [PubMed]
  5. M. Wachsmuth, and K. Weisshart, “Fluorescence photobleaching and fluorescence correlation spectroscopy: two complementary technologies to study molecular dynamics in living cells,” in Imaging Cellular and Molecular Biological Functions (Springer Verlag, Heidelberg, 2007).
  6. W. B. Amos and J. G. White, “How the confocal laser scanning microscope entered biological research,” Biol. Cell 95(6), 335–342 (2003). [CrossRef] [PubMed]
  7. C. Cremer and T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81(1), 31–44 (1978). [PubMed]
  8. J. Pawley, Handbook of Biological Confocal Microscopy (Springer, Berlin, 2006).
  9. G. Rabut, J. Ellenberg, D. Spector, and D. Goldman, “Photobleaching Techniques to Study Mobility and Molecular Dynamics of Proteins in Live Cells: FRAP, iFRAP, and FLIP,” in Live Cell Imaging - A Laboratory Manual (CSHL Press, Cold Spring Harbor, 2005), pp. 101–126.
  10. M. E. van Royen, P. Farla, K. A. Mattern, B. Geverts, J. Trapman, and A. B. Houtsmuller, “Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells,” Methods Mol. Biol. 464, 363–385 (2009). [CrossRef]
  11. N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J. 65(3), 1135–1146 (1993). [CrossRef] [PubMed]
  12. N. O. Petersen, R. Rigler, and E. S. Elson, “FCS and spatial correlations on biological surfaces,” in Fluorescence Correlation Spectroscopy - Theory and Applications (Springer, Heidelberg, 2001), pp. 162–184.
  13. D. L. Kolin, S. Costantino, and P. W. Wiseman, “Sampling effects, noise, and photobleaching in temporal image correlation spectroscopy,” Biophys. J. 90(2), 628–639 (2006). [CrossRef]
  14. D. L. Kolin, D. Ronis, and P. W. Wiseman, “k-Space image correlation spectroscopy: a method for accurate transport measurements independent of fluorophore photophysics,” Biophys. J. 91(8), 3061–3075 (2006). [CrossRef] [PubMed]
  15. D. L. Kolin and P. W. Wiseman, “Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells,” Cell Biochem. Biophys. 49(3), 141–164 (2007). [CrossRef] [PubMed]
  16. C. M. Brown, R. B. Dalal, B. Hebert, M. A. Digman, A. R. Horwitz, and E. Gratton, “Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope,” J. Microsc. 229(1), 78–91 (2008). [CrossRef] [PubMed]
  17. M. A. Digman, C. M. Brown, P. Sengupta, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Measuring fast dynamics in solutions and cells with a laser scanning microscope,” Biophys. J. 89(2), 1317–1327 (2005). [CrossRef] [PubMed]
  18. M. A. Digman and E. Gratton, “Analysis of diffusion and binding in cells using the RICS approach,” Microsc. Res. Tech. 72(4), 323–332 (2009). [CrossRef]
  19. M. A. Digman, P. W. Wiseman, C. Choi, A. R. Horwitz, and E. Gratton, “Stoichiometry of molecular complexes at adhesions in living cells,” Proc. Natl. Acad. Sci. U.S.A. 106(7), 2170–2175 (2009). [CrossRef] [PubMed]
  20. E. Gielen, N. Smisdom, M. Vandeven, B. De Clercq, E. Gratton, M. Digman, J.-M. Rigo, J. Hofkens, Y. Engelborghs, and M. Ameloot, “Measuring Diffusion of Lipid-like Probes in Artificial and Natural Membranes by Raster Image Correlation Spectroscopy (RICS): Use of a Commercial Laser-Scanning Microscope with Analog Detection,” Langmuir (2009).
  21. M. A. Digman, R. Dalal, A. F. Horwitz, and E. Gratton, “Mapping the number of molecules and brightness in the laser scanning microscope,” Biophys. J. 94(6), 2320–2332 (2008). [CrossRef]
  22. V. Vukojević, M. Heidkamp, Y. Ming, B. Johansson, L. Terenius, and R. Rigler, “Quantitative single-molecule imaging by confocal laser scanning microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18176–18181 (2008). [CrossRef] [PubMed]
  23. K. M. Berland, P. T. C. So, Y. Chen, W. W. Mantulin, and E. Gratton, “Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation,” Biophys. J. 71(1), 410–420 (1996). [CrossRef] [PubMed]
  24. D. E. Koppel, F. Morgan, A. E. Cowan, and J. H. Carson, “Scanning concentration correlation spectroscopy using the confocal laser microscope,” Biophys. J. 66(2), 502–507 (1994). [CrossRef] [PubMed]
  25. J. Ries, S. Chiantia, and P. Schwille, “Accurate determination of membrane dynamics with line-scan FCS,” Biophys. J. 96(5), 1999–2008 (2009). [CrossRef] [PubMed]
  26. J. Widengren, Ü. Mets, and R. Rigler, “Fluorescence Correlation Spectroscopy of Triplet States in Solution: A Theoretical and Experimental Study,” J. Phys. Chem. 99(36), 13368–13379 (1995). [CrossRef]
  27. “LFD Workshop 2006 - Laboratory for Fluorescence Dynamics” (2006), http://www.lfd.uci.edu/workshop/2006/ .
  28. M. Wachsmuth, “Method for measuring fluorescence fluctuations in the presence of slow signal fluctuations,” US Patent No. 7,154,602 (2006).
  29. G. S. Harms, L. Cognet, P. H. Lommerse, G. A. Blab, and T. Schmidt, “Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy,” Biophys. J. 80, 2396–2408 (2001). [CrossRef] [PubMed]
  30. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, New York, 1999).
  31. M. Wachsmuth, W. Waldeck, and J. Langowski, “Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy,” J. Mol. Biol. 298(4), 677–689 (2000). [CrossRef] [PubMed]
  32. I. Gregor, D. Patra, and J. Enderlein, “Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation,” ChemPhysChem 6(1), 164–170 (2005). [CrossRef] [PubMed]
  33. P. Dittrich, F. Malvezzi-Campeggi, M. Jahnz, and P. Schwille, “Accessing molecular dynamics in cells by fluorescence correlation spectroscopy,” Biol. Chem. 382(3), 491–494 (2001). [CrossRef] [PubMed]
  34. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77(4), 2251–2265 (1999). [CrossRef] [PubMed]
  35. K. P. Müller, F. Erdel, M. Caudron-Herger, C. Marth, B. D. Fodor, M. Richter, M. Scaranaro, J. Beaudouin, M. Wachsmuth, and K. Rippe, “Multiscale analysis of dynamics and interactions of heterochromatin protein 1 by fluorescence fluctuation microscopy,” Biophys. J. 97(11), 2876–2885 (2009). [CrossRef] [PubMed]
  36. J. Beaudouin, F. Mora-Bermúdez, T. Klee, N. Daigle, and J. Ellenberg, “Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins,” Biophys. J. 90(6), 1878–1894 (2006). [CrossRef] [PubMed]
  37. C. Pack, K. Saito, M. Tamura, and M. Kinjo, “Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs,” Biophys. J. 91(10), 3921–3936 (2006). [CrossRef] [PubMed]
  38. M. Wachsmuth, M. Caudron-Herger, and K. Rippe, “Genome organization: balancing stability and plasticity,” Biochim. Biophys. Acta 1783(11), 2061–2079 (2008). [CrossRef] [PubMed]
  39. N. Dross, C. Spriet, M. Zwerger, G. Müller, W. Waldeck, J. Langowski, and J. Z. Rappoport, “Mapping eGFP oligomer mobility in living cell nuclei,” PLoS ONE 4(4), e5041–e5041 (2009). [CrossRef] [PubMed]
  40. A. Bancaud, S. Huet, N. Daigle, J. Mozziconacci, J. Beaudouin, and J. Ellenberg, “Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin,” EMBO J. 28(24), 3785–3798 (2009). [CrossRef] [PubMed]
  41. C. M. Roth, P. I. Heinlein, M. Heilemann, and D.-P. Herten, “Imaging diffusion in living cells using time-correlated single-photon counting,” Anal. Chem. 79(19), 7340–7345 (2007). [CrossRef] [PubMed]
  42. G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J. 38(6), 813–828 (2009). [CrossRef] [PubMed]
  43. B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially Resolved Total Internal Reflection Fluorescence Correlation Microscopy Using an Electron Multiplying Charge-Coupled Device Camera,” Analytical Chemistry (2007).
  44. D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96(12), 5050–5059 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited