OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21238–21251

Enhancing imaging systems using transformation optics

David R. Smith, Yaroslav Urzhumov, Nathan B. Kundtz, and Nathan I. Landy  »View Author Affiliations

Optics Express, Vol. 18, Issue 20, pp. 21238-21251 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1035 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We apply the transformation optical technique to modify or improve conventional refractive and gradient index optical imaging devices. In particular, when it is known that a detector will terminate the paths of rays over some surface, more freedom is available in the transformation approach, since the wave behavior over a large portion of the domain becomes unimportant. For the analyzed configurations, quasi-conformal and conformal coordinate transformations can be used, leading to simplified constitutive parameter distributions that, in some cases, can be realized with isotropic index; index-only media can be low-loss and have broad bandwidth. We apply a coordinate transformation to flatten a Maxwell fish-eye lens, forming a near-perfect relay lens; and also flatten the focal surface associated with a conventional refractive lens, such that the system exhibits an ultra-wide field-of-view with reduced aberration.

© 2010 OSA

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(220.3620) Optical design and fabrication : Lens system design
(220.3630) Optical design and fabrication : Lenses
(230.0230) Optical devices : Optical devices
(160.3918) Materials : Metamaterials

ToC Category:
Imaging Systems

Original Manuscript: July 23, 2010
Revised Manuscript: September 14, 2010
Manuscript Accepted: September 15, 2010
Published: September 22, 2010

David R. Smith, Yaroslav Urzhumov, Nathan B. Kundtz, and Nathan I. Landy, "Enhancing imaging systems using transformation optics," Opt. Express 18, 21238-21251 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. E. G. Post, Formal Structure of Electromagnetics: General Covariance and Electromagnetics (Interscience Publishers, New York, 1962).
  3. A. Nicolet, J. F. Remacle, B. Meys, A. Genon, and W. Legros, “Transformation methods in computational electromagnetism,” J. Appl. Phys. 75(10), 6036–6038 (1994). [CrossRef]
  4. A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996). [CrossRef]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  6. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009). [CrossRef] [PubMed]
  7. V. M. Shalaev, “Physics. Transforming light,” Science 322(5900), 384–386 (2008). [CrossRef] [PubMed]
  8. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8(10), 247 (2006). [CrossRef]
  9. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009). [CrossRef]
  10. D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17(19), 16535–16542 (2009). [CrossRef] [PubMed]
  11. D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimaters, flat lenses and right-angle bends,” N. J. Phys. 10(11), 115023 (2008). [CrossRef]
  12. D. H. Kwon and D. H. Werner; “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17(10), 7807–7817 (2009). [CrossRef] [PubMed]
  13. D. Schurig, “An aberration-free lens with zero f-number,” N. J. Phys. 10(11), 115034 (2008). [CrossRef]
  14. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010). [CrossRef]
  15. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8(8), 639–642 (2009). [CrossRef] [PubMed]
  16. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008). [CrossRef] [PubMed]
  17. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef] [PubMed]
  18. L. H. Gabrielli, J. Cardenas, C. B. Pointras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461 (2009). [CrossRef]
  19. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010). [CrossRef] [PubMed]
  20. E. W. Marchand, Gradient Index Optics (Academic Press, New York, 1978).
  21. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006). [CrossRef] [PubMed]
  22. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  23. N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009). [CrossRef] [PubMed]
  24. P. Knupp, and S. Steinberg, Fundamentals of Grid Generation (CRC Press, Boca Raton, FL, 1993).
  25. Z. Chang, X. Zhou, J. Hu, and G. Hu, “Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries,” Opt. Express 18(6), 6089–6096 (2010). [CrossRef] [PubMed]
  26. N. B. Kundtz, Advances in Complex Artificial Electromagnetic Media, PhD Dissertation, Duke University, Durham, N. Carolina (2009).
  27. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006). [CrossRef] [PubMed]
  28. E. Hecht, Optics, 4th Ed. (Addison-Wesley, San Francisco, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited