OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21293–21307

Automated layer segmentation of macular OCT images using dual-scale gradient information

Qi Yang, Charles A. Reisman, Zhenguo Wang, Yasufumi Fukuma, Masanori Hangai, Nagahisa Yoshimura, Atsuo Tomidokoro, Makoto Araie, Ali S. Raza, Donald C. Hood, and Kinpui Chan  »View Author Affiliations

Optics Express, Vol. 18, Issue 20, pp. 21293-21307 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel automated boundary segmentation algorithm is proposed for fast and reliable quantification of nine intra-retinal boundaries in optical coherence tomography (OCT) images. The algorithm employs a two-step segmentation schema based on gradient information in dual scales, utilizing local and complementary global gradient information simultaneously. A shortest path search is applied to optimize the edge selection. The segmentation algorithm was validated with independent manual segmentation and a reproducibility study. It demonstrates high accuracy and reproducibility in segmenting normal 3D OCT volumes. The execution time is about 16 seconds per volume (480x512x128 voxels). The algorithm shows potential for quantifying images from diseased retinas as well.

© 2010 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 12, 2010
Revised Manuscript: September 9, 2010
Manuscript Accepted: September 13, 2010
Published: September 22, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Qi Yang, Charles A. Reisman, Zhenguo Wang, Yasufumi Fukuma, Masanori Hangai, Nagahisa Yoshimura, Atsuo Tomidokoro, Makoto Araie, Ali S. Raza, Donald C. Hood, and Kinpui Chan, "Automated layer segmentation of macular OCT images using dual-scale gradient information," Opt. Express 18, 21293-21307 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fecher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaizt, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  3. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28(19), 1745–1747 (2003). [CrossRef] [PubMed]
  4. B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004). [CrossRef] [PubMed]
  5. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008). [CrossRef]
  6. M. Wang, D. C. Hood, J. S. Cho, Q. Ghadiali, G. V. De Moraes, X. Zhang, R. Ritch, and J. M. Liebmann, “Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography,” Arch. Ophthalmol. 127(7), 875–881 (2009). [CrossRef] [PubMed]
  7. O. Tan, V. Chopra, A. T. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116(12), 2305.e1–2314.e2, (2009). [CrossRef]
  8. H. W. van Dijk, P. H. Kok, M. Garvin, M. Sonka, J. H. Devries, R. P. Michels, M. E. van Velthoven, R. O. Schlingemann, F. D. Verbraak, and M. D. Abràmoff, “Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 50(7), 3404–3409 (2009). [CrossRef] [PubMed]
  9. D. Cabrera DeBuc and G. M. Somfai, “Early detection of retinal thickness changes in diabetes using Optical Coherence Tomography,” Med. Sci. Monit. 16(3), MT15–MT21 (2010). [PubMed]
  10. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005). [CrossRef] [PubMed]
  11. M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005). [CrossRef] [PubMed]
  12. O. Tan, G. Li, A. T. Lu, R. Varma, D. Huang, and Advanced Imaging for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008). [CrossRef]
  13. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001). [CrossRef] [PubMed]
  14. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005). [CrossRef] [PubMed]
  15. T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009). [CrossRef] [PubMed]
  16. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005). [CrossRef] [PubMed]
  17. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009). [CrossRef]
  18. M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008). [CrossRef] [PubMed]
  19. V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18(14), 14730–14744 (2010). [CrossRef] [PubMed]
  20. S. Lu, C. Cheung, J. Liu, J. Lim, C. Leung, and T. Wong, “Automated Layer Segmentation of Optical Coherence Tomography Images,” IEEE Trans. Biomed. Eng. in press. [PubMed]
  21. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008). [CrossRef] [PubMed]
  22. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009). [CrossRef] [PubMed]
  23. G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010). [CrossRef] [PubMed]
  24. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986). [CrossRef] [PubMed]
  25. M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision (Thomson, 2008).
  26. M. Baroni, P. Fortunato, and A. La Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29(4), 432–441 (2007). [CrossRef]
  27. D. C. Hood, C. E. Lin, M. A. Lazow, K. G. Locke, X. Zhang, and D. G. Birch, “Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50(5), 2328–2336 (2009). [CrossRef]
  28. D. C. Hood, J. Cho, A. S. Raza, B. A. Dale, and W. Min, “Reliability of a computer-aided, manual procedure for segmenting OCT scans,” Optom. Vis. Sci. (to be published). [PubMed]
  29. A. Bruce, I. E. Pacey, P. Dharni, A. J. Scally, and B. T. Barrett, “Repeatability and reproducibility of macular thickness measurements using fourier domain optical coherence tomography,” Open Ophthalmol J 3(1), 10–14 (2009). [CrossRef] [PubMed]
  30. A. Polito, M. Del Borrello, M. Isola, N. Zemella, and F. Bandello, “Repeatability and reproducibility of fast macular thickness mapping with stratus optical coherence tomography,” Arch. Ophthalmol. 123(10), 1330–1337 (2005). [CrossRef] [PubMed]
  31. A. O. González-García, G. Vizzeri, C. Bowd, F. A. Medeiros, L. M. Zangwill, and R. N. Weinreb, “Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements,” Am. J. Ophthalmol. 147(6), 1067–1074.1 (2009). [CrossRef] [PubMed]
  32. A. Garas, P. Vargha, and G. Holló, “Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph,” Ophthalmology 117(4), 738–746 (2010). [CrossRef] [PubMed]
  33. D. C. Hood, B. Fortune, S. N. Arthur, D. Xing, J. A. Salant, R. Ritch, and J. M. Liebmann, “Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(7), 519–528 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited