OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21356–21369

Modeling a MEMS deformable mirror using non-parametric estimation techniques

Dani Guzmán, Francisco Javier de Cos Juez, Richard Myers, Andrés Guesalaga, and Fernando Sánchez Lasheras  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 21356-21369 (2010)
http://dx.doi.org/10.1364/OE.18.021356


View Full Text Article

Enhanced HTML    Acrobat PDF (5224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using non-parametric estimation techniques, we have modeled an area of 126 actuators of a micro-electro-mechanical deformable mirror with 1024 actuators. These techniques produce models applicable to open-loop adaptive optics, where the turbulent wavefront is measured before it hits the deformable mirror. The model’s input is the wavefront correction to apply to the mirror and its output is the set of voltages to shape the mirror. Our experiments have achieved positioning errors of 3.1% rms of the peak-to-peak wavefront excursion.

© 2010 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.1285) Atmospheric and oceanic optics : Atmospheric correction

ToC Category:
Adaptive Optics

History
Original Manuscript: June 21, 2010
Revised Manuscript: September 16, 2010
Manuscript Accepted: September 17, 2010
Published: September 23, 2010

Citation
Dani Guzmán, Francisco Javier de Cos Juez, Richard Myers, Andrés Guesalaga, and Fernando Sánchez Lasheras, "Modeling a MEMS deformable mirror using non-parametric estimation techniques," Opt. Express 18, 21356-21369 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-20-21356


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Hammer, F. Sayede, E. Gendron, T. Fusco, D. Burgarella, V. Cayatte, J. M. Conan, F. Courbin, H. Flores, I. Guinouard, L. Jocou, A. Lancon, G. Monnet, M. Mouhcine, F. Rigaud, D. Rouan, G. Rousset, V. Buat, and F. Zamkotsian, “The FALCON Concept: Multi-Object Spectroscopy Combined with MCAO in Near-IR,” Proc. ESO Workshop (2002)
  2. F. Assémat, E. Gendron, and F. Hammer, “The FALCON concept: multi-object adaptive optics and atmospheric tomography for integral field spectroscopy - principles and performance on an 8-m telescope,” Mon. Not. R. Astron. Soc. 376(1), 287–312 (2007). [CrossRef]
  3. C. Evans, S. Morris, M. Swinbank, J. G. Cuby, M. Lehnert, and M. Puech, “EAGLE: galaxy evolution with the E-ELT,” Astron. Geophys. 51(2), 2.17–2.21 (2010). [CrossRef]
  4. T. Bifano, P. Bierden, H. Zhu, S. Cornelissen, and J. Kim, “Megapixel wavefront correctors,” Proc. SPIE 5490, 1472–1481 (2004). [CrossRef]
  5. J. W. Evans, B. Macintosh, L. Poyneer, K. Morzinski, S. Severson, D. Dillon, D. Gavel, and L. Reza, “Demonstrating sub-nm closed loop MEMS flattening,” Opt. Express 14(12), 5558–5570 (2006). [CrossRef] [PubMed]
  6. D. Guzmán, F. J. Juez, F. S. Lasheras, R. Myers, and L. Young, “Deformable mirror model for open-loop adaptive optics using multivariate adaptive regression splines,” Opt. Express 18(7), 6492–6505 (2010). [CrossRef] [PubMed]
  7. J. B. Stewart, A. Diouf, Y. Zhou, and T. G. Bifano, “Open-loop control of a MEMS deformable mirror for large-amplitude wavefront control,” J. Opt. Soc. Am. A 24(12), 3827–3833 (2007). [CrossRef]
  8. K. Morzinski, K. Harpsoe, D. Gavel, and S. Ammons, “The open-loop control of MEMS: Modeling and experimental results,” Proc. SPIE 6467, 64670G–1 (2007). [CrossRef]
  9. C. Blain, R. Conan, C. Bradley, and O. Guyon, “Open-loop control demonstration of micro-electro-mechanical-system MEMS deformable mirror,” Opt. Express 18(6), 5433–5448 (2010). [CrossRef] [PubMed]
  10. J. Chambers, Software for Data Analysis: Programming with R, (Springer, 2008).
  11. J. Friedman, “Multivariate adaptive regression splines,” Ann. Stat. 19(1), 1–67 (1991). [CrossRef]
  12. S. Sekulic and B. R. Kowalski, “MARS: a tutorial,” J. Chemometr. 6(4), 199–216 (1992). [CrossRef]
  13. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2(5), 359–366 (1989). [CrossRef]
  14. J. de Villiers and E. Barnard, “Backpropagation neural nets with one and two hidden layers,” IEEE Trans. Neural Netw. 4(1), 136–141 (1993). [CrossRef] [PubMed]
  15. A. W. Minns and M. J. Hall, “Artificial neural networks as rainfall-runoff models / Modelisation pluie-debit par des reseaux neuroneaux artificiels,” Hydrol. Sci. J. 41(3), 399–417 (1996). [CrossRef]
  16. R. J. Abrahart and L. See, “Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments,” Hydrol. Process. 14(11-12), 2157–2172 (2000). [CrossRef]
  17. A. Y. Shamseldin, “Application of a neural network technique to rainfall-runoff modelling,” J. Hydrol. (Amst.) 199(3-4), 272–294 (1997). [CrossRef]
  18. C. M. Zealand, D. H. Burn, and S. P. Simonovic, “Short term streamflow forecasting using artificial neural networks,” J. Hydrol. (Amst.) 214(1-4), 32–48 (1999). [CrossRef]
  19. C. W. Dawson and R. L. Wilby, “Hydrological modelling using artificial neural networks,” Prog. Phys. Geogr. 25(1), 80–108 (2001).
  20. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature 323(6088), 533–536 (1986). [CrossRef]
  21. A. J. C. Sharkey, “On combining artificial neural nets,” Connect. Sci. 8(3), 299–314 (1996). [CrossRef]
  22. R. D. Braddock, M. L. Kremmer, and L. Sanzogni, “Feed-forward artificial neural network model for forecasting rainfall run-off,” Environmetrics 9(4), 419–432 (1998). [CrossRef]
  23. S.-I. Amari, N. Murata, K.-R. Muller, M. Finke, and H. H. Yang, “Asymptotic statistical theory of overtraining and cross-validation,” IEEE Trans. Neural Netw. 8(5), 985–996 (1997). [CrossRef] [PubMed]
  24. W. Wang, P. H. A. J. M. Van Gelder, and J. K. Vrijling, “Some issues about the generalization of neural networks for time series prediction”. W. Duch, ed., in Artificial Neural Networks: Formal Models and Their Applications, Lecture Notes in Computer Science, Vol. 3697 (2005), pp. 559–564.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited