OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21386–21396

A non-stationary model for simulating the dynamics of ocular aberrations

C. Leahy and C. Dainty  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 21386-21396 (2010)
http://dx.doi.org/10.1364/OE.18.021386


View Full Text Article

Enhanced HTML    Acrobat PDF (1445 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The time-evolution of ocular aberrations has been the subject of many studies, but so far there has been little discussion involving the modelling of the underlying temporal statistics. This paper presents a non-stationary modelling approach based on a coloured-noise generator, which can be applied to ocular aberration dynamics. The model parameters are computed from measured ocular aberration data. A custom-built aberrometer based on a Shack-Hartmann sensor was used for measurement. We present simulations based on our modelling approach, and validate them through comparison to real data. This work could be useful in areas such as the testing of ophthalmic devices and the development of improved algorithms for laser refractive surgery.

© 2010 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.4060) Vision, color, and visual optics : Vision modeling

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: July 6, 2010
Revised Manuscript: September 9, 2010
Manuscript Accepted: September 22, 2010
Published: September 23, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
C. Leahy and C. Dainty, "A non-stationary model for simulating the dynamics of ocular aberrations," Opt. Express 18, 21386-21396 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-20-21386


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. N. Bruce, Biomedical Signal Processing and SignalModeling (Wiley Series in Telecommunications and Signal Processing, 2001).
  2. C. Roberts, "Future challenges to aberration-free ablative procedures," J. Refract. Surg. 16, 623-629 (2000).
  3. A. Mira-Agudelo, L. Lundström, and P. Artal, "Temporal dynamics of ocular aberrations:Monocular vs binocular vision," Ophthal. Physiol. Opt. 29, 256-263 (2009). [CrossRef]
  4. R. Navarro, E. Moreno-Barriuso, S. Bará, and T. Mancebo, "Phase plates for wave-aberration compensation in the human eye," Opt. Lett. 25, 236-238 (2000). [CrossRef]
  5. S. O. Galetskiy, T. Yu. Cherezova, and A. V. Kudryashov, "Adaptive optics in ophthalmology: human eye wavefront generator," Proc. SPIE 6849, 68490918 (2008).
  6. D. R. Iskander, M. Collins, M. Morelande, and M. Zhu, "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004). [CrossRef] [PubMed]
  7. H. Hofer, P. Artal, and D. R. Williams, "Dynamics of the eyes wave aberration," J. Opt. Soc. Am. A. 18, 497-506 (2001). [CrossRef]
  8. K. Hampson, E. Mallen, and J. C. Dainty, "Coherence function analysis of the higher-order aberrations of the human eye," Opt. Lett. 31, 184-186 (2006). [CrossRef] [PubMed]
  9. K. Hampson, I. Munro, C. Paterson, and J. C. Dainty, "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A. 22, 1241-1250 (2005). [CrossRef]
  10. M. Zhu, M. J. Collins, and D. R. Iskander, "Microfluctuations of wavefront aberrations of the eye," Opthal. Physiol. Opt. 24, 562-571 (2004). [CrossRef]
  11. D. R. Iskander, M. R. Morelande, and M. J. Collins, "Estimating the dynamics of aberration components in the human eye," In IEEE Signal Process. Workshop Statist. pages 241-244 (2001).
  12. K. Billah and M. Shinozuka, "Numerical method for colored noise generation and its application to a bistable system," Phys. Rev. A 42, 7492-7495 (1990). [CrossRef] [PubMed]
  13. N. Davies, L. Diaz-Santana, and D. Lara-Sucedo, "Repeatability of ocular wavefront measurement," Optom. Vis. Sci. 80, 142-150 (2003). [CrossRef] [PubMed]
  14. L. Diaz-Santana, V. Guériaux, G. Arden, and S. Gruppetta, "New methodology to measure the dynamics of ocular wave front aberrations during small amplitude changes of accommodation," Opt. Express 15, 5649-5663 (2007). [CrossRef] [PubMed]
  15. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, "Benefit of higher closed-loop bandwidths in ocular adaptive optics," Opt. Express 11, 2597-2605 (2003). [CrossRef] [PubMed]
  16. S. Gruppetta, F. Lacombe, and P. Puget, "Study of the dynamic aberrations of the human tear film," Opt. Express 13, 7631-7636 (2005). [CrossRef] [PubMed]
  17. K. Y. Li and G. Yoon, "Changes in aberrations and retinal image quality due to tear film dynamics," Opt. Express 14, 12552-12559 (2006). [CrossRef] [PubMed]
  18. L. Rankine, N. Stevenson,M. Mesbah, and B. Boashash, "A nonstationary model of newborn EEG," IEEE Trans. Biomed. Eng 54, 19-28 (2007). [CrossRef] [PubMed]
  19. B. Boashash and M. Mesbah, "A time-frequency approach for newborn seizure detection," IEEE Eng. Med. Biol. Mag. 20, 54-64 (2001). [CrossRef] [PubMed]
  20. M. Muma, D. R. Iskander, and M. J. Collins, "The role of cardiopulmonary signals in the dynamics of the eye’s wavefront aberrations," IEEE Trans. Biomed. Eng. 57, 373-383 (2010). [CrossRef]
  21. N. Kasdin, "Discrete simulation of colored noise and stochastic processes and 1/f power law noise," Proc. IEEE 83, 802-827 (1995). [CrossRef]
  22. B. M. Hill "A simple general approach to inference about the tail of a distribution," Ann. Statist. 3, 1163-1174 (1975). [CrossRef]
  23. A. Clauset, C. R. Shalizi, and M. E. J. Newman, "Power-law distributions in empirical data," arXiv:0706.1062v1, URL http://arxiv.org/abs/0706.1062v1 (2007).
  24. N. R. Lomb, "Least-squares frequency analysis of unequally spaced data," Astrophys. Space Sci. 39, 447-462 (1975). [CrossRef]
  25. J. D. Scargle, "Studies in astronomical time series analysis ii. statistical aspects of spectral analysis of unevenly spaced data," Astrophys. J. 263, 835-853 (1982). [CrossRef]
  26. P. Celka and P. Colditz, "Nonlinear nonstationary Wiener model of infant seizures," IEEE Trans. Biomed. Eng. 49, 556-564 (2002). [CrossRef] [PubMed]
  27. L. R. Stark and D. A. Atchison, "Pupil size, mean accommodation response and the fluctuations of accommodation," Opthal. Physiol. Opt. 17, 316-323 (1997). [CrossRef]
  28. C. Leahy, C. Leroux, C. Dainty, and L. Diaz-Santana, "Temporal dynamics and statistical characteristics of the microfluctuations of accommodation: Dependence on the mean accommodative effort," Opt. Express 18, 2668-2681 (2010). [CrossRef] [PubMed]
  29. M. B. Priestley, Non-Linear and Non-Stationary Time Series Analysis (Academic Press, London, United Kingdom, 1988).
  30. L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthal. Physiol. Opt. 22, 427-433 (2002). [CrossRef]
  31. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef]
  32. L. Cohen, Time-Frequency Analysis, (Prentice-Hall, New York, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited