OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21397–21403

Design of ultrahigh-Q photoinduced cavities in defect-free photonic crystal slabs

Snjezana Tomljenovic-Hanic and C. Martijn de Sterke  »View Author Affiliations

Optics Express, Vol. 18, Issue 20, pp. 21397-21403 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1654 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate numerically that a cavity can be induced in a defect-free photonic crystal slab made of photosensitive material such as chalcogenide glass. A key advantage of the design is the possibility for complete post-processing in an otherwise defect-free structure, and the cavity can thus be formed anywhere in the photonic crystal. We demonstrate that high-Q cavities with Q~108 can be designed in this way. Since the high-Q mode can originate from an air-band, these cavities appear to be ideal candidates for sensing applications.

© 2010 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: July 19, 2010
Revised Manuscript: September 17, 2010
Manuscript Accepted: September 20, 2010
Published: September 23, 2010

Snjezana Tomljenovic-Hanic and C. Martijn de Sterke, "Design of ultrahigh-Q photoinduced cavities in defect-free photonic crystal slabs," Opt. Express 18, 21397-21403 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  2. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  3. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]
  4. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006). [CrossRef] [PubMed]
  5. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33(19), 2206–2208 (2008). [CrossRef] [PubMed]
  6. F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006). [CrossRef]
  7. B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004). [CrossRef]
  8. R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006). [CrossRef]
  9. P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, “Local infiltration of planar photonic crystals with UV-curable polymers,” J. Opt. Soc. Am. B 25(10), 1562–1567 (2008). [CrossRef]
  10. S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007). [CrossRef] [PubMed]
  11. S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, “Microlasers based on effective index confined slow light modes in photonic crystal waveguides,” Opt. Express 16(9), 6331–6339 (2008). [CrossRef] [PubMed]
  12. M.-K. Seo, J. H. Kang, M.-K. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, H.-G. Park, and Y.-H. Lee, “Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition,” Opt. Express 17(8), 6790–6798 (2009). [CrossRef] [PubMed]
  13. S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. 32(5), 542–544 (2007). [CrossRef] [PubMed]
  14. A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003). [CrossRef]
  15. M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34(23), 3671–3673 (2009). [CrossRef] [PubMed]
  16. J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express 17(15), 13009–13016 (2009). [CrossRef] [PubMed]
  17. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995). [CrossRef]
  18. F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890–10902 (2007). [CrossRef] [PubMed]
  19. F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel, and A. Rahmani, “Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light,” Opt. Express 17(7), 5439–5445 (2009). [CrossRef] [PubMed]
  20. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003). [CrossRef]
  21. V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107(17), 6756–6769 (1997). [CrossRef]
  22. S. Tomljenovic-Hanic and C. M. de Sterke, “High-Q cavity design in photonic crystal heterostructures,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technol., OSA Technical Digest, JTuA125 (2008).
  23. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009). [CrossRef]
  24. D. Englund, I. Fushman, and J. Vucković, “General recipe for designing photonic crystal cavities,” Opt. Express 13(16), 5961–5975 (2005). [CrossRef] [PubMed]
  25. Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12(17), 3988–3995 (2004). [CrossRef] [PubMed]
  26. S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. Martijn de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009). [CrossRef] [PubMed]
  27. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008). [CrossRef]
  28. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009). [CrossRef]
  29. P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009). [CrossRef]
  30. S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express 17(8), 6465–6475 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited