OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 21519–21533

Ultra-compact multilayer Si/SiO2 GRIN lens mode-size converter for coupling single-mode fiber to Si-wire waveguide

Ter-Hoe Loh, Qian Wang, Jie Zhu, Keh-Ting Ng, Yi-Cheng Lai, Yingyan Huang, and Seng-Tiong Ho  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 21519-21533 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3018 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the fabrication and experimental demonstration of optical mode size transformation between standard single-mode fiber and 0.26μm-thick Si-waveguide by 12μm-thick Si/SiO2 multilayer on-chip GRIN lens of lengths 16μm or 24μm butt-joint to 10μm-wide terminated Si-waveguide. The overall coupling loss of the coupler was measured to be 3.45dB in which the Fresnel reflection loss is estimated to be 2dB at the GRIN-lens/air interface. The on-chip integrated GRIN lens opens up the feasibility of a low cost passive aligned fiber-pigtailed electronic-photonics integrated circuits platform.

© 2010 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Optical Design and Fabrication

Original Manuscript: July 2, 2010
Revised Manuscript: September 10, 2010
Manuscript Accepted: September 11, 2010
Published: September 27, 2010

Ter-Hoe Loh, Qian Wang, Jie Zhu, Keh-Ting Ng, Yi-Cheng Lai, Yingyan Huang, and Seng-Tiong Ho, "Ultra-compact multilayer Si/SiO2 GRIN lens mode-size converter for coupling single-mode fiber to Si-wire waveguide," Opt. Express 18, 21519-21533 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006). [CrossRef]
  2. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006). [CrossRef]
  3. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express 11(26), 3555–3561 (2003). [CrossRef] [PubMed]
  4. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  5. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]
  6. A. Delâge, S. Janz, B. Lamontagne, A. Bogdanov, D. Dalacu, D.-X. Xu, and K. P. Yap, “Monolithically integrated asymmetric graded and step-index couplers for microphotonic waveguides,” Opt. Express 14(1), 148–161 (2006). [CrossRef] [PubMed]
  7. K. Shiraishi and C. S. Tsai, “A micro light-beam spot-size converter using a hemicylindrical GRIN-slab tip with high-index contrast,” J. Lightwave Technol. 23(11), 3821–3826 (2005). [CrossRef]
  8. H. Yoda, H. Ikedo, T. Ketsuka, A. Irie, K. Shiraishi, and C. S. Tsai, “A high performance micro-GRIN-chip spot-size converter formed with focused ion-beam,” IEEE Photon. Technol. Lett. 18(14), 1554–1556 (2006). [CrossRef]
  9. R. Sun, V. Nguyen, A. Agarwal, C. Y. Hong, J. Yasaitis, L. Kimerling, and J. Michel, “High performance asymmetric graded index coupler with integrated lens for high index waveguides,” Appl. Phys. Lett. 90(20), 201116 (2007). [CrossRef]
  10. K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007). [CrossRef]
  11. H. Yoda, K. Shiraishi, A. Ohshima, T. Ishimura, H. Furuhashi, H. Tsuchiya, and C. S. Tsai, “A two-port single-mode fiber-silicon wire waveguide coupler module using spot-size converters,” J. Lightwave Technol. 27(10), 1315–1319 (2009). [CrossRef]
  12. Y. Huang and S. T. Ho, “Superhigh numerical aperture (NA > 1.5) micro gradient-index lens based on a dual-material approach,” Opt. Lett. 30(11), 1291–1293 (2005). [CrossRef] [PubMed]
  13. Q. Wang, Y. Huang, T.-H. Loh, D. K. T. Ng, and S.-T. Ho, “Thin-film stack based integrated GRIN coupler with aberration-free focusing and super-high NA for efficient fiber-to-nanophotonic-chip coupling,” Opt. Express 18(5), 4574–4589 (2010). [CrossRef] [PubMed]
  14. T. H. Loh, Q. Wang, K. T. Ng, and S. T. Ho, “Design and fabrication of multilayer Si/SiO2 super-high N.A. GRIN lens for nano-waveguide to optical fiber coupling,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2009), paper CThK2. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2005-CTuT2
  15. LUMERICAL FDTD SOLUTIONS, http://www.lumerical.com
  16. R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguide,” Electron. Lett. 21(13), 581–583 (1985). [CrossRef]
  17. G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated waveguide propagation loss measurement,” Pure Appl. Opt. 2(6), 683–700 (1993). [CrossRef]
  18. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  19. Q. Wang, T. H. Loh, K. T. Ng, and S. T. Ho, “Design and analysis of optical coupling between silicon nanophotonic waveguide and standard singlemode fiber using an integrated asymmetric Super-GRIN lens,” IEEE J. Sel. Top. Quantum Electron. (to be published). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited