OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 21603–21611

Second harmonic scattering from small particles using Discrete Dipole Approximation

Naveen K. Balla, Peter T. C. So, and Colin J. R. Sheppard  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 21603-21611 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (978 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We extend a simple dipole approximation model to predict nonlinear scattering from small particles. This numerical method is known as Discrete Dipole Approximation (DDA) and has been extensively used to model linear scattering by small particles of various shapes and sizes. We show here that DDA can be used to efficiently model second harmonic scattering by small particles. Our results are compared with experimental data and other computational methods.

© 2010 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: May 17, 2010
Manuscript Accepted: May 25, 2010
Published: September 28, 2010

Naveen K. Balla, Peter T. C. So, and Colin J. R. Sheppard, "Second harmonic scattering from small particles using Discrete Dipole Approximation," Opt. Express 18, 21603-21611 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008). [CrossRef]
  2. E. Adler, “Nonlinear Optical Frequency Polarization in a Dielectric,” Phys. Rev. 134(3A), A728–A733 (1964). [CrossRef]
  3. G. S. Agarwal and S. S. Jha, “Theory of second harmonic generation at a metal surface with surface plasmon excitation,” Solid State Commun. 41(6), 499–501 (1982). [CrossRef]
  4. X. M. Hua and J. I. Gersten, “Theory of second-harmonic generation by small metal spheres,” Phys. Rev. B 33(6), 3756–3764 (1986). [CrossRef]
  5. O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: The role of quantum chaotic dynamics,” Phys. Rev. B 51(24), 17591–17599 (1995). [CrossRef]
  6. A. Guerrero and B. S. Mendoza, “Model for great enhancement of second-harmonic generation in quantum dots,” J. Opt. Soc. Am. B 12(4), 559–569 (1995). [CrossRef]
  7. V. L. Brudny, B. S. Mendoza, and W. Luis Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62(16), 11152–11162 (2000). [CrossRef]
  8. W. L. Mochán, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68(8), 085318 (2003). [CrossRef]
  9. D. Östling, P. Stampfli, and K. H. Bennemann, “Theory of nonlinear optical properties of small metallic spheres,” Z. Phys. D At. Mol. Clust. 28, 169–175 (1993). [CrossRef]
  10. J. Martorell, R. Vilaseca, and R. Corbalán, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55(6), 4520–4525 (1997). [CrossRef]
  11. N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87(10), 103902 (2001). [CrossRef] [PubMed]
  12. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999). [CrossRef]
  13. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21(7), 1328–1347 (2004). [CrossRef]
  14. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007). [CrossRef] [PubMed]
  15. Y. Jung, H. Chen, L. Tong, and J.-X. Cheng, “Imaging Gold Nanorods by Plasmon-Resonance-Enhanced Four Wave Mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009). [CrossRef]
  16. A. Wijaya, S. B. Schaffer, I. G. Pallares, and K. Hamad-Schifferli, “Selective release of multiple DNA oligonucleotides from gold nanorods,” ACS Nano 3(1), 80–86 (2009). [CrossRef] [PubMed]
  17. E. M. Purcell and C. R. Pennypacker, “Scattering and Absorption of Light by Nonspherical Dielectric Grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  18. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  19. J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett. 16(15), 1198–1200 (1991). [CrossRef] [PubMed]
  20. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994). [CrossRef]
  21. B. T. Draine and P. J. Flatau, “User Guide for the Discrete Dipole Approximation Code DDSCAT 7.0,” (2008).
  22. A. G. Hoekstra and P. M. A. Sloot, “Coupled dipole simulations of elastic light scattering on parallel systems,” Int. J. Mod. Phys. C 6(5), 663–679 (1995). [CrossRef]
  23. A. G. Hoekstra, M. D. Grimminck, and P. M. A. Sloot, “Large Scale Simulations of Elastic Light Scattering by a Fast Discrete Dipole Approximation,” Int. J. Mod. Phys. C 9(1), 87–102 (1998). [CrossRef]
  24. A. Lakhtakia, “General theory of the Purcell-Pennypacker scattering approach and its extension to bianisotropic scatterers,” Astrophys. J. 394, 494–499 (1992). [CrossRef]
  25. N. Arzate, B. S. Mendoza, and R. A. Vázquez-Nava, “Polarizable dipole models for reflectance anisotropy spectroscopy: a review,” J. Phys. Condens. Matter 16(39), S4259–S4278 (2004). [CrossRef]
  26. W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995). [CrossRef]
  27. N. Félidj, J. Aubard, and G. Levi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111(3), 1195–1208 (1999). [CrossRef]
  28. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  29. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  30. S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504–123507 (2006). [CrossRef]
  31. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25(11), 2693–2703 (2008). [CrossRef]
  32. F. Bordas, N. Louvion, S. Callard, P. C. Chaumet, and A. Rahmani, “Coupled dipole method for radiation dynamics in finite photonic crystal structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056601 (2006). [CrossRef] [PubMed]
  33. D. A. Smith and K. L. Stokes, “Discrete dipole approximation for magneto-optical scattering calculations,” Opt. Express 14(12), 5746–5754 (2006). [CrossRef] [PubMed]
  34. Y. You, G. W. Kattawar, and P. Yang, “Invisibility cloaks for toroids,” Opt. Express 17(8), 6591–6599 (2009). [CrossRef] [PubMed]
  35. M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005). [CrossRef] [PubMed]
  36. P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046708 (2005). [CrossRef] [PubMed]
  37. P. Flatau, “Fast solvers for one dimensional light scattering in the discrete dipole approximation,” Opt. Express 12(14), 3149–3155 (2004). [CrossRef] [PubMed]
  38. P. J. Flatau, “Improvements in the discrete-dipole approximation method of computing scattering and absorption,” Opt. Lett. 22(16), 1205–1207 (1997). [CrossRef] [PubMed]
  39. C. M. J. Wijers, T. Rasing, and R. W. J. Hollering, “Second harmonic generation from thin slabs in the discrete dipole approach,” Solid State Commun. 85(3), 233–237 (1993). [CrossRef]
  40. E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57(23), 14901–14913 (1998). [CrossRef]
  41. L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17(10), 1685–1694 (2000). [CrossRef]
  42. J.-X. Cheng and X. S. Xie, “Green's function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19(7), 1604–1610 (2002). [CrossRef]
  43. N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi 0(8c), 2931–2937 (2003). [CrossRef]
  44. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25(6), 955–960 (2008). [CrossRef]
  45. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71(16), 165407 (2005). [CrossRef]
  46. I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar Contributions of the Second Harmonic Generation from Silver and Gold Nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited