OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 21669–21677

High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit

M. W. Maqsood, R. Mehfuz, and K. J. Chau  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 21669-21677 (2010)
http://dx.doi.org/10.1364/OE.18.021669


View Full Text Article

Enhanced HTML    Acrobat PDF (2889 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel SPP coupling scheme capable of high SPP throughput and high SPP coupling efficiency based on a slit of width greater than the wavelength, immersed in a uniform dielectric. The dispersive properties of the slit are engineered such that the slit sustains a low-loss higher-order waveguide mode just above cutoff, which is shown to be amenable to wavevector matching to the SPP mode at the slit exit. The SPP throughput and SPP coupling efficiency are quantified by numerical simulations of visible light propagation through the slit for varying width and dielectric refractive index. An optimal SPP coupling configuration satisfying wavevector matching is shown to yield an order-of-magnitude greater SPP throughput than a comparable slit of sub-wavelength width and a peak SPP coupling efficiency ≃ 68%. To our knowledge, this is the first investigation of coupling between higher-order waveguide modes in slits of super-wavelength width and SPP modes.

© 2010 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 1, 2010
Revised Manuscript: September 22, 2010
Manuscript Accepted: September 23, 2010
Published: September 29, 2010

Citation
M. W. Maqsood, R. Mehfuz, and K. J. Chau, "High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit," Opt. Express 18, 21669-21677 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-21669


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001). [CrossRef]
  2. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003). [CrossRef]
  3. R. Mehfuz, M. W. Maqsood, and K. J. Chau, “Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering,” Opt. Express 18, 18206–18216 (2010). [CrossRef] [PubMed]
  4. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of Surface Plasmon Generation at Nanoslit Apertures,” Phys. Rev. Lett. 95, 263902 (2005). [CrossRef]
  5. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608–1615 (2006). [CrossRef]
  6. S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000). [CrossRef]
  7. H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008). [CrossRef]
  8. O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “On the phase of plasmons excited by slits in a metal film,” Opt. Express 14, 11823–11832 (2006). [CrossRef] [PubMed]
  9. Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86, 5601–5603 (2001). [CrossRef] [PubMed]
  10. R. D. Kekatpure, A. C. Hryciw, E. S. Barnard, and M. L. Brongersma, “Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,” Opt. Express 17, 24112–24129 (2009). [CrossRef]
  11. S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding systems,” IEEE Trans. Microw. Theory Tech. 33, 967–971 (1985). [CrossRef]
  12. P. B. Johnson, and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 4, 43704379 (1972).
  13. M. W. Kowarz, “Homogeneous and evanescent contributions in scalar near-field diffraction,” Appl. Opt. 34, 3055–3063 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited