OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 21678–21686

Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants

Peter M. Krenz, Robert L. Olmon, Brian A. Lail, Markus B. Raschke, and Glenn D. Boreman  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 21678-21686 (2010)
http://dx.doi.org/10.1364/OE.18.021678


View Full Text Article

Enhanced HTML    Acrobat PDF (1426 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Impedance matched and low loss transmission lines are essential for optimal energy delivery through an integrated optical or plasmonic nanocircuit. A novel method for the measurement of the attenuation and propagation constants of an antenna-coupled coplanar strip (CPS) transmission line is demonstrated at 28.3 THz using scattering-type scanning near-field optical microscopy. Reflection of the propagating optical wave upon an open-circuit or short-circuit load at the terminal of the CPS provides a standing voltage wave, which is mapped through the associated surface-normal Ez electric near-field component at the metal-air interface. By fitting the analytical standing wave expression to the near-field data, the transmission line properties are determined. Full-wave models and measured results are presented and are in excellent agreement.

© 2010 OSA

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(260.2110) Physical optics : Electromagnetic optics
(260.3060) Physical optics : Infrared
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Microscopy

History
Original Manuscript: August 5, 2010
Revised Manuscript: September 18, 2010
Manuscript Accepted: September 21, 2010
Published: September 29, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
Peter M. Krenz, Robert L. Olmon, Brian A. Lail, Markus B. Raschke, and Glenn D. Boreman, "Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants," Opt. Express 18, 21678-21686 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-21678


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010). [CrossRef] [PubMed]
  2. J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009). [CrossRef] [PubMed]
  3. C. T. Middlebrook, P. M. Krenz, B. A. Lail, and G. D. Boreman;, “Infrared phased-array antenna,” Microw. Opt. Technol. Lett. 50(3), 719–723 (2008). [CrossRef]
  4. J. A. Hutchison, S. P. Centeno, H. Odaka, H. Fukumura, J. Hofkens, and H. Uji-I, “Subdiffraction limited, remote excitation of surface enhanced Raman scattering,” Nano Lett. 9(3), 995–1001 (2009). [CrossRef] [PubMed]
  5. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007). [CrossRef] [PubMed]
  6. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997).
  7. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997). [CrossRef] [PubMed]
  8. A. Alù and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23(3), 571–583 (2006). [CrossRef]
  9. T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Characterization of microstrip transmission lines at IR frequencies - Modeling, fabrication and measurements,” Microw. Opt. Technol. Lett. 50(5), 1232–1237 (2008). [CrossRef]
  10. J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009). [CrossRef] [PubMed]
  11. T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Infrared-frequency coplanar striplines: design, fabrication, and measurements,” Microw. Opt. Technol. Lett. 47(1), 17–20 (2005). [CrossRef]
  12. J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17(8), 5925–5932 (2009). [CrossRef] [PubMed]
  13. A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009). [CrossRef] [PubMed]
  14. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
  15. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008). [CrossRef] [PubMed]
  16. D. M. Pozar, Microwave Engineering, 3rd ed., (J. Wiley, Hoboken, NJ, 2005).
  17. M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008). [CrossRef] [PubMed]
  18. R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008). [CrossRef] [PubMed]
  19. A. Bek, R. Vogelgesang, and K. Kern, “Scanning near-field optical microscope with sub 10-nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006). [CrossRef]
  20. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1817), 787–805 (2004). [CrossRef] [PubMed]
  21. B. C. Wadell, Transmission Line Design Handbook (Artech House, Boston, 1991).
  22. R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric field, magnetic field, and electric current distributions of infrared optical antennas: A nano-optical vector network analyzer,” Phys. Rev. Lett. (to be published). [PubMed]
  23. S.-N. Lee, J. I. Lee,, W. B. Kim, J. G. Yook, Y.-J. Kim, and S. J. Lee, “Conductor-loss reduction for high-frequency transmission lines based on the magnetorheological-fluid polishing method,” Microw. Opt. Technol. Lett. 42(5), 405–407 (2004). [CrossRef]
  24. J. E. Chan, K. Sivaprasad, and K. A. Chamberlin, “High-frequency modeling of frequency-dependent dielectric and conductor losses in transmission lines,” IEEE Trans. Compon. Packag. Tech. 30(1), 86–91 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 3 Fig. 1 Fig. 2
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited