OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 21714–21724

Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach

Mikhail Kirillin, Igor Meglinski, Vladimir Kuzmin, Ekaterina Sergeeva, and Risto Myllylä  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 21714-21724 (2010)
http://dx.doi.org/10.1364/OE.18.021714


View Full Text Article

Enhanced HTML    Acrobat PDF (1225 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Monte Carlo method is applied for simulation of 2D optical coherence tomography (OCT) images of skin-like model. Layer boundaries in skin model feature curved shape which agrees with physiological structure of human skin. The effect of coherence properties of probing radiation on OCT image formation and speckles in the detected OCT signal is considered. The developed model is employed for image simulation both for conventional and polarization dependent time-domain OCT modalities. Simulation of polarized OCT signal is performed using vector approach developed previously for modeling of electromagnetic field transfer in turbid media.

© 2010 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(290.5855) Scattering : Scattering, polarization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 12, 2010
Revised Manuscript: September 8, 2010
Manuscript Accepted: September 13, 2010
Published: September 29, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
Mikhail Kirillin, Igor Meglinski, Vladimir Kuzmin, Ekaterina Sergeeva, and Risto Myllylä, "Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach," Opt. Express 18, 21714-21724 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-21714


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  3. J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999). [CrossRef]
  4. B. E. Bouma, and G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, New York, 2002).
  5. V. V. Tuchin, Handbook of Coherent Domain Optical Methods: Biomedical Diagnostics Environment and Material Science (Kluwer Academic, Boston, 2004).
  6. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple-scattering in optical coherence microscopy,” Appl. Opt. 43(25), 5699–5707 (1995). [CrossRef]
  7. I. V. Meglinski, “Modeling the reflectance spectra of the optical radiation for random inhomogeneous multi-layered highly scattering and absorbing media by the Monte Carlo technique,” Quantum Electron. 31, 1101–1107 (2001).
  8. M. Yu. Kirillin, A. V. Priezzhev, and R. Myllylä, “Role of multiple scattering in formation of OCT skin images,” Quantum Electron. 38, 486–490 (2008). [CrossRef]
  9. R. R. Meier, J.-S. Lee, and D. E. Anderson, “Atmospheric scattering of middle uv radiation from an internal source,” Appl. Opt. 17(20), 3216–3225 (1978). [CrossRef] [PubMed]
  10. C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, and C. Roze, “Comparison of iterative and monte carlo methods for calculation of the Aureole about a point source in the earth’s atmosphere,” Appl. Opt. 38(30), 6237–6246 (1999). [CrossRef]
  11. E. A. Bucher, “Computer simulation of light pulse propagation for communication through thick clouds,” Appl. Opt. 12(10), 2391–2400 (1973). [CrossRef] [PubMed]
  12. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007). [CrossRef] [PubMed]
  13. E. Berrocal, I. V. Meglinski, D. A. Greenhalgh, and M. A. Linne, “Image transfer through the complex scattering turbid media,” Laser Phys. Lett. 3(9), 464–468 (2006). [CrossRef]
  14. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999). [CrossRef] [PubMed]
  15. M. Yu. Kirillin, M. V. Shirmanova, M. A. Sirotkina, M. L. Bugrova, B. N. Khlebtsov, and E. V. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for OCT imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14, 021017 (2009). [CrossRef] [PubMed]
  16. B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22(7), 1369–1379 (2005). [CrossRef]
  17. B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography,” J. Opt. Soc. Am. A 22(7), 1380–1388 (2005). [CrossRef]
  18. M. Y. Kirillin, A. V. Priezzhev, and I. V. Meglinski, “Effect of photons of different scattering orders on the formation of a signal in optical low-coherence tomography of highly scattering media,” Quantum Electron. 36(3), 247–252 (2006). [CrossRef]
  19. V. L. Kuzmin and I. V. Meglinski, “Multiple scattering and intensity fluctuations in optical coherence tomography of randomly inhomogeneous media,” J. Exp. Theor. Phys. 105(2), 285–291 (2007). [CrossRef]
  20. R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002). [CrossRef]
  21. M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Europ. Opt. Soc. Rap. Public. 2, 07031 (2007). [CrossRef]
  22. I.M. Sobol’, The Monte Carlo Method (The University of Chicago Press, Chicago, 1974).
  23. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  24. D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47(23), 4271–4285 (2002). [CrossRef] [PubMed]
  25. D. Y. Churmakov, V. L. Kuz’min, and I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36(11), 1009–1015 (2006). [CrossRef]
  26. J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).
  27. C. Brosseau, Fundamentals of Polarized Light: a Statistical Optics Approach (New York: John Wiley & Sons, 1998).
  28. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (New York: Wiley, 1983)
  29. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002). [CrossRef] [PubMed]
  30. S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000). [CrossRef]
  31. M. J. Raković, G. W. Kattawar, M. B. Mehrubeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38(15), 3399–3408 (1999). [CrossRef]
  32. D. A. Zimnyakov, Y. P. Sinichkin, P. V. Zakharov, and D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11(4), 395–412 (2001). [CrossRef]
  33. S. V. Gangnus, S. J. Matcher, and I. V. Meglinski, “Monte Carlo modeling of polarized light propagation in biological tissues,” Laser Phys. 14, 886–891 (2004).
  34. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31(30), 6535–6546 (1992). [CrossRef] [PubMed]
  35. E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-Study of the Coherent Backscattering of Light by Disordered Media,” J. Phys. France 49(1), 77–98 (1988). [CrossRef]
  36. M. J. Stephen and G. Cwilich, “Rayleigh scattering and weak localization: Effects of polarization,” Phys. Rev. B Condens. Matter 34(11), 7564–7572 (1986). [CrossRef] [PubMed]
  37. F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B Condens. Matter 40(4), 2383–2406 (1989). [CrossRef] [PubMed]
  38. D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A, Pure Appl. Opt. 2(3), 200–208 (2000). [CrossRef]
  39. A. Dogariu, C. Kutsche, P. Likamwa, G. Boreman, and B. Moudgil, “Time-domain depolarization of waves retroreflected from dense colloidal media,” Opt. Lett. 22(9), 585–587 (1997). [CrossRef] [PubMed]
  40. V.V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis (SPIE Press, Bellingham, 2000).
  41. V. L. Kuzmin and I. V. Meglinski, “Helicity flip of backscattered circularly polarized light,” Proc. SPIE 7573, 75730Z (2010). [CrossRef]
  42. P. S. Carney, E. Wolf, and G. S. Agarwal, “Statistical generalizations of the optical cross-section theorem with application to inverse scattering,” J. Opt. Soc. Am. A 14(12), 3366–3371 (1997). [CrossRef]
  43. V. L. Kuzmin and E. V. Aksenova, “A generalized Milne solution for the correlation effects of multiple light scattering with polarization,” J. Exp. Theor. Phys. 96(5), 816–831 (2003). [CrossRef]
  44. V. L. Kuz’min, V. P. Romanov, and L. A. Zubkov, “Propagation and scattering of light in fluctuating media,” Phys. Rep. 248(2-5), 71–368 (1994). [CrossRef]
  45. P. K. Milsom, “A ray-optic, Monte Carlo, description of a Gaussian beam waist – applied to reverse saturable absorption,” Appl. Phys. B 70(4), 593–599 (2000). [CrossRef]
  46. V. L. Kuz’min and I. V. Meglinski, “Anomalous polarization effects during light scattering in random media,” J. Exp. Theor. Phys. 110(5), 742–753 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited