OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 21784–21797

Modeling and design of nano-plasmonic structures using transmission line modeling

Osman S. Ahmed, Mohamed. A. Swillam, Mohamed. H. Bakr, and Xun Li  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 21784-21797 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1613 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the first time, we demonstrate the application of the time domain transmission line method (TLM) to accurate modeling of surface plasmon polariton (SPP) structures. The constructed TLM node allows for modeling of dispersive materials through simple time-difference equations. Using such node, an ultra-wide band excitation can be applied to obtain the response over the band of interest. Bérenger’s perfectly matched layer (PML) boundary condition can readily be implemented using the same node. We illustrate our TLM approach through the modeling of different challenging structures including SPPs filters and focusing structures.

© 2010 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: July 12, 2010
Revised Manuscript: August 9, 2010
Manuscript Accepted: August 19, 2010
Published: September 29, 2010

Osman S. Ahmed, Mohamed. A. Swillam, Mohamed. H. Bakr, and Xun Li, "Modeling and design of nano-plasmonic structures using transmission line modeling," Opt. Express 18, 21784-21797 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005). [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  5. F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500–4502 (2003). [CrossRef]
  6. B. Guo, Q. Gan, G. Song, J. Gao, and L. Chen, “Numerical study of a high-resolution far-field scanning optical microscope via a surface plasmon modulated light source,” J. Lightwave Technol. 25(3), 830–833 (2007). [CrossRef]
  7. H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007). [CrossRef]
  8. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010). [CrossRef]
  9. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004). [CrossRef]
  10. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005). [CrossRef] [PubMed]
  11. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009). [CrossRef]
  12. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009). [CrossRef]
  13. D. Choi, Y. Lim, S. Roh, I. M. Lee, J. Jung, and B. Lee, “Optical beam focusing with a metal slit array arranged along a semicircular surface and its optimization with a genetic algorithm,” Appl. Opt. 49(7), A30–A35 (2010). [CrossRef] [PubMed]
  14. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  15. R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B Chem. 29(1-3), 261–267 (1995). [CrossRef]
  16. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition, 3rd ed. (Artech House Publishers, 2005).
  17. Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission Line and Equivalent Circuit Models for Plasmonic Waveguide Components,” IEEE J. Sel. Topics in Quantum Mechanics 14(6), 1462–1472 (2008). [CrossRef]
  18. J. R. Brews, “Transmission line models for lossy waveguide interconnect in VLSI,” IEEE Trans. Electron. Dev. 33(9), 1356–1365 (1986). [CrossRef]
  19. P. B. Johns and M. O’Brien, “Use of transmission-line modelling method to solve non-linear lumped networks,” Radio Electron. Eng. 50, 59–70 (1980). [CrossRef]
  20. S. Hui, K. FUNG, and C. Christopoulos, “Decoupled simulation of multistage power electronics systems using transmission-line links”. Power electronics specialist conference, (Toledo, Spain, 1992), pp. 1324–1330.
  21. K. Fung and S. Hui, “Improved TLM link model for reactive circuit components,” IEE Proc. Sci. Meas. Technol. 143(5), 341–344 (1996). [CrossRef]
  22. L. Vietzorreck, F. Coccetti, V. Chtchekatourov, and P. Russer, “Modeling of MEMS capacitive switches by TLM,” in 2000 IEEE MTT-S International Microwave Symposium Digest, (2000), pp. 1221–1224.
  23. C. Christopoulos and J. Herring, “The application of transmission-line modeling (TLM) to electromagnetic compatibility problems,” IEEE Trans. Electromagnetic Compatibility 35(Part 2), 185–191 (1993). [CrossRef]
  24. D. Pasalic and R. Vahldieck, “A Hybrid Drift-Diffusion-TLM Analysis of Traveling-Wave Photodetectors,” IEEE Trans. Microw. Theory Tech. 53(9), 2700–2706 (2005). [CrossRef]
  25. D. D. Cogan, Transmission line matrix (TLM) techniques for diffusion applications, (CRC Press, 1998).
  26. P. B. Johns and R. L. Beurle, “Numerical solution of 2-dimensional scattering problems using a transmission-line matrix,” Proc. Inst. Electr. Eng. 118(9), 1203–1208 (1971). [CrossRef]
  27. C. Christopoulos, The Transmission-Line Modeling Method: TLM, (Wiley-IEEE Press, 1995).
  28. P. B. Johns, “A symmetrical condensed node for the TLM method,” IEEE Trans. Microw. Theory Tech. 35(4), 370–377 (1987). [CrossRef]
  29. O. Jacquin, F. Ndagijimana, A. Cachard, and P. Benech, “Application of the TLM technique to integrated optic component modelling,” Int. J. of Numer. Model: Electronic Networks Devices and Fields 14, 95–105 (2001). [CrossRef]
  30. L. de Menezes, and W. J. R. Hoefer, “Modeling frequency dependent dielectrics in TLM,” in IEEE Antennas Propagat.-S Symp. Dig., (1994), pp. 1140–1143.
  31. L. de Menezes, and W. J. R. Hoefer, “Modeling nonlinear dispersive media in 2-D-TLM,” in 24th European Microwave Conference Proc., (1994), pp. 1739–1744.
  32. L. de Menezes and W. J. R. Hoefer, “Modeling of general constitutive relationships in SCN TLM,” IEEE Trans. Microw. Theory Tech. 44(6), 854–861 (1996). [CrossRef]
  33. J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material models in TLM—Part I: Materials with frequency-dependent properties,” IEEE Trans. Antenn. Propag. 47(10), 1528–1534 (1999). [CrossRef]
  34. J. Paul, C. Christopoulos, and D. W. P. Thomas, “Perfectly matched layer for transmission line modelling (TLM) method,” Electron. Lett. 33(9), 729–730 (1997). [CrossRef]
  35. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).
  36. J. P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994). [CrossRef]
  37. C. Eswarappa and W. Hoefer, “Implementation of Berenger absorbing boundary conditions in TLM by interfacing FDTD perfectly matched layers,” Electron. Lett. 31(15), 1264 (1995). [CrossRef]
  38. S. Le Maguer, N. Peňa, and M. Ney, “Matched absorbing medium techniques for full-wave TLM simulation of microwave and millimeter-wave components,” Ann. Telecommun. 53, 115–129 (1998).
  39. B. Wang and G. P. Wang, “Plasmon bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005). [CrossRef]
  40. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007). [CrossRef]
  41. C. Sönnichsen, Plasmons in metal nanostructures, Ph.D. dissertation, Ludwig-Maximilians-Universtät München, (München, 2001).
  42. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  43. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008). [CrossRef] [PubMed]
  44. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16(3), 1475–1480 (2008). [CrossRef] [PubMed]
  45. D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14(8), 3503–3511 (2006). [CrossRef] [PubMed]
  46. S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008). [CrossRef]
  47. E. D. Palik, Handbook of optical constants of solids. (Academic Press, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited