OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 21815–21825

Film-free laser forward printing of transparent and weakly absorbing liquids

M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 21815-21825 (2010)
http://dx.doi.org/10.1364/OE.18.021815


View Full Text Article

Enhanced HTML    Acrobat PDF (1762 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A laser-based technique for printing transparent and weakly absorbing liquids is developed. Its principle of operation relies in the tight focusing of short laser pulses inside the liquid and close to its free surface, in such a way that the laser radiation is absorbed in a tiny volume around the beam waist, with practically no absorption in any other location along the beam path. If the absorbed energy overcomes the optical breakdown threshold, a cavitation bubble is generated, and its expansion results in the propulsion of a small fraction of liquid which can be collected on a substrate, leading to the printing of a microdroplet for each laser pulse. The technique does not require the preparation of the liquid in thin film form, and its forward mode of operation imposes no restriction concerning the optical properties of the substrate. These characteristics make it well suited for printing a wide variety of materials of interest in diverse applications. We demonstrate that the film-free laser forward printing technique is capable of printing microdroplets with good resolution, reproducibility and control, and analyze the influence of the main process parameter, laser pulse energy. The mechanisms of liquid printing are also investigated: time-resolved imaging provides a clear picture of the dynamics of liquid transfer which allows understanding the main features observed in the printed droplets.

© 2010 OSA

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(140.7090) Lasers and laser optics : Ultrafast lasers
(310.1860) Thin films : Deposition and fabrication
(350.3390) Other areas of optics : Laser materials processing
(110.6915) Imaging systems : Time imaging

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 22, 2010
Revised Manuscript: September 10, 2010
Manuscript Accepted: September 10, 2010
Published: September 29, 2010

Citation
M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, "Film-free laser forward printing of transparent and weakly absorbing liquids," Opt. Express 18, 21815-21825 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-21815


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Levene, R. D. Scott, and B. W. Siryj, “Material transfer recording,” Appl. Opt. 9(10), 2260–2265 (1970). [PubMed]
  2. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
  3. I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 66(5), 579–582 (1998).
  4. A. Piqué, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(7), S279–S284 (1999).
  5. A. Piqué, D. B. Chrisey, J. M. Fitz-Gerald, R. A. McGill, R. C. Y. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan, “Direct writing of electronic and sensor materials using a laser transfer technique,” J. Mater. Res. 15(9), 1872–1875 (2000).
  6. C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32, 23–31 (2007).
  7. L. Rapp, A.K. Diallo, A.P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95, 171109 (2009).
  8. H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Pique, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).
  9. C. Boutopoulos, V. Tsouti, D. Goustouridis, S. Chatzandroulis, and I. Zergioti, “Liquid phase direct laser printing of polymers for chemical sensing applications,” Appl. Phys. Lett. 93, 191109 (2008).
  10. M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron. 20(8), 1638–1642 (2005). [PubMed]
  11. I. Zergioti, A. Karaiskou, D.G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials,” Appl. Phys. Lett. 86, 163902 (2005).
  12. V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).
  13. M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 93(4), 941–945 (2008).
  14. B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D. B. Chrisey, A. Szabó, and A. Nógrádi, “Survival and proliferative ability of various living cell types after laser-induced forward transfer,” Tissue Eng. 11(11-12), 1817–1823 (2005).
  15. A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, and R. Auyeung, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
  16. B. R. Ringeisen, C. M. Othon, J. A. Barron, D. Young, and B. J. Spargo, “Jet-based methods to print living cells,” Biotechnol. J. 1(9), 930–948 (2006). [PubMed]
  17. M. Colina, M. Duocastella, J.M. Fernández-Pradas, P. Serra, and J.L. Morenza, “Laser-induced forward transfer of liquids: study of the droplet ejection process,” J. Appl. Phys. 99, 084909 (2006).
  18. N.T. Kattamis, P.E. Purnick, R. Weiss, and C.B. Arnold, “Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials,” Appl. Phys. Lett. 91, 171120 (2007).
  19. N.T. Kattamis, N.D. McDaniel, S. Bernhard, and C.B. Arnold, “Laser direct write printing of sensitive and robust light emitting organic molecules,” Appl. Phys. Lett. 94, 103306 (2009).
  20. M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, D. Zafra, and P. Serra, ““Novel laser printing technique for miniaturized biosensors preparation,” Sens. Act,” Biol. Chem. 145, 596–600 (2010).
  21. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
  22. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002). [PubMed]
  23. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
  24. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15(16), 10303–10317 (2007). [PubMed]
  25. P. G. de Gennes, “Wetting - statics and dynamics,” Rev. Mod. Phys. 57(3), 827–863 (1985).
  26. J. A. Barron, H. D. Young, D. D. Dlott, M. M. Darfler, D. B. Krizman, and B. R. Ringeisen, “Printing of protein microarrays via a capillary-free fluid jetting mechanism,” Proteomics 5(16), 4138–4144 (2005). [PubMed]
  27. P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).
  28. Y. Lin, Y. Huang, and D.B. Chrisey, “Droplet formation in matrix-assisted pulsed-laser evaporation direct writing of glycerol-water solution,” J. Appl. Phys. 105, 093111 (2009).
  29. E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, “Minimally disruptive laser-induced breakdown in water,” Opt. Lett. 22(23), 1817–1819 (1997).
  30. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008). [PubMed]
  31. J. R. Blake and D. C. Gibson, “Growth and collapse of a vapor cavity near a free-surface,” J. Fluid Mech. 111(-1), 123–140 (1981).
  32. A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).
  33. M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys., A Mater. Sci. Process. 93(2), 453–456 (2008).
  34. M. Duocastella, J.M. Fernández-Pradas, J.L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106, 084907 (2009).
  35. J. Eggers, “Nonlinear dynamics and breakup of free-surface flows,” Rev. Mod. Phys. 69(3), 865–930 (1997).
  36. B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature 403(6768), 401–404 (2000). [PubMed]
  37. L. Duchemin, S. Popinet, C. Josserand, and S. Zaleski, “Jet formation in bubbles bursting at a free surface,” Phys. Fluids 14(9), 3000–3008 (2002).
  38. A. M. Worthington and R. S. Cole, “Impact with a liquid surface studied by the aid of instantaneous photography,” Philos. Trans. R. Soc. Lond. A 25, 261–498 (1897).
  39. M. Rein, “Phenomena of liquid-drop impact on solid and liquid surfaces,” Fluid Dyn. Res. 12(2), 61–93 (1993).
  40. J. Shin and T. A. Mcmahon, “The tuning of a splash,” Phys. Fluids A 2(8), 1312–1317 (1990).
  41. A. Ogawa, K. Utsuno, M. Mutou, S. Kouzen, Y. Shimotake, and Y. Satou, “Morphological study of cavity and Worthington jet formations for newtonian and non-newtonian liquids,” Particul. Sci. Technol. 24(2), 181–225 (2006).
  42. M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited