OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 21826–21840

Femtosecond laser micromachining of fused silica molds

Frédéric Madani-Grasset and Yves Bellouard  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 21826-21840 (2010)
http://dx.doi.org/10.1364/OE.18.021826


View Full Text Article

Enhanced HTML    Acrobat PDF (1464 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of low-energy femtosecond laser beam combined with chemical etching has been proven to be an efficient method to fabricate three-dimensional structures in fused silica. For high-volume application, this technology – like other serial processes – suffers from a moderate production rate. Here, we show that femtosecond laser can also be employed to fabricate silica molds and other patterned surfaces, including surfaces with high aspect ratio features (> 10). Through appropriate tailoring of silica’s surface property and subsequent creation of, for instance, simple elastomeric molding, new opportunities for the indirect 3D, multi-scale spatial characterization of deep laser-fabricated microstructures come along. We demonstrate that those moldings are characterized by a high fidelity (down to the nanometer scale) to the silica mold. These results further advance the applicability of femtosecond laser processing to glass.

© 2010 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.5470) Materials : Polymers
(230.4000) Optical devices : Microstructure fabrication
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Laser Microfabrication

History
Original Manuscript: July 28, 2010
Revised Manuscript: September 19, 2010
Manuscript Accepted: September 21, 2010
Published: September 29, 2010

Citation
Frédéric Madani-Grasset and Yves Bellouard, "Femtosecond laser micromachining of fused silica molds," Opt. Express 18, 21826-21840 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-21826


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. A. Marcinkevi Ius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001). [CrossRef]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003). [CrossRef]
  4. A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Discrete nonlinear localization in femtosecond laser written waveguides in fused silica,” Opt. Express 13(26), 10552–10557 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10552 . [CrossRef] [PubMed]
  5. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-5-3531 . [CrossRef] [PubMed]
  6. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef] [PubMed]
  7. E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27(24), 2200–2202 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-24-2200 . [CrossRef]
  8. M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35(10), 1662–1664 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-10-1662 . [CrossRef] [PubMed]
  9. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2120 . [CrossRef] [PubMed]
  10. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” Materials Research Society Symposium - Proceedings 782, 63–68 (2003).
  11. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6635 . [CrossRef] [PubMed]
  12. G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 307–310 (2003).
  13. Y. V. White, X. Li, Z. Sikorski, L. M. Davis, and W. Hofmeister, “Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO2.,” Opt. Express 16(19), 14411–14420 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14411 . [CrossRef] [PubMed]
  14. Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, “Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 88(4), 699–704 (2007). [CrossRef]
  15. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009). [CrossRef] [PubMed]
  16. Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses,” Opt. Express 16(24), 19520–19534 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19520 . [CrossRef] [PubMed]
  17. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009). [CrossRef]
  18. M. Déruelle, M. Tirrell, Y. Marciano, H. Hervet, and L. Léger, “Adhesion energy between polymer networks and solid surfaces modified by polymer attachment,” Faraday Discuss. 98, 55–66 (1994). [CrossRef]
  19. O. Guiselin, “Irreversible adsorption of a concentrated polymer solution,” Europhys. Lett. 17(3), 225–230 (1992). [CrossRef]
  20. A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices 7(4), 281–293 (2005). [CrossRef]
  21. L. Léger, H. Raphaël, and H. Hervet, “Surface-anchored polymer chains: their role in adhesion and friction,” Adv. Polym. Sci. 138, 185–225 (1999). [CrossRef]
  22. F. Madani-Grasset, N. T. Pham, E. Glynos, and V. Koutsos, “Imaging thin and ultrathin organic films by scanning white light interferometry,” Mater. Sci. Eng. B 152(1-3), 125–131 (2008). [CrossRef]
  23. T. McWaid, T. Vorburger, J. F. Song, and D. Chandler-Horowitz, “The effects of thin films on interferometric step height measurements,” in: K. Creath, J.E. Grevenkamp (Eds), Interferometry: Surface Characterization and Testing (SPIE), 1776, 2–13 (1992).
  24. Y. Xia and G. M. Whitesides, “Extending microcontact printing as a microlithographic technique,” Langmuir 13(7), 2059–2067 (1997). [CrossRef]
  25. D. Y. Lee, D. H. Lee, H. S. Lim, J. T. Han, and K. Cho, “Chemical and geometrical criteria for the release of elastomeric 1D nanoarrays from porous nanotemplates,” Langmuir 26(5), 3252–3256 (2010). [CrossRef]
  26. E. D. Palick, “Handbook of optical constant of solids,” Academic Press Inc, (1985).
  27. F. Madani-Grasset, “Polydimethylsiloxane (PDMS) monolayers: morphology, nanostructure, adhesive and frictional properties,” PhD thesis, the University of Edinburgh, 161–166 (2005).
  28. M. J. Owen, “The surface activity of silicones: a short review,” Ind. Eng. Chem. Prod. Res. Dev. 19(1), 97–103 (1980). [CrossRef]
  29. A. E. Ismail, G. S. Grest, D. R. Heine, M. J. Stevens, and M. Tsige, “Interfacial structure and dynamics of siloxane systems: PDMS-vapor and PDMS-water,” Macromolecules 42(8), 3186–3194 (2009). [CrossRef]
  30. A. Falsafi, S. Mangipudi, and M. J. Owen, “Surface and interfacial properties,” in J.E. Mark (Ed), Physical properties of polymers handbook 2nd ed, Springer, New-York, USA, 1012–1018 (2007).
  31. E. Barthel, “Adhesive elastic contacts: JKR and more,” J. Phys. D Appl. Phys. 41(16), 163001 (2008). [CrossRef]
  32. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14(18), 8360–8366 (2006). [CrossRef] [PubMed]
  33. Y. Bellouard, V. K. Pahilwani, T. Rohrlack, A. Said, M. Dugan, and P. Bado, Towards a femtosecond laser micromachined opto-fluidic device for detection algae species, in Commercial and Biomedical Applications of Ultrafast Lasers IX, Proceedings of SPIE Vol. 7203 (SPIE, Bellingham, WA 2009); Editors: edited by Joseph Neev, Stefan Nolte, Alexander Heisterkamp, Rick P. Trebino, San Jose, United States, 720312, (2009)
  34. F. L. Galeener, “Planar rings in glasses,” Solid State Commun. 44(7), 1037–1040 (1982). [CrossRef]
  35. M. Tomozawa, Y. Lee, and Y. Peng, “Effect of uniaxial stresses on silica glass structure investigated by IR spectroscopy,” J. Non-Cryst. Solids 242(2-3), 104–109 (1998). [CrossRef]
  36. A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997). [CrossRef]
  37. K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO[sub 2] materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003). [CrossRef]
  38. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001). [CrossRef]
  39. D. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008). [CrossRef]
  40. D. Rayner, A. Naumov, and P. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13(9), 3208–3217 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3208 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited