OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 21861–21872

Mid-infrared Fourier transform spectroscopy with a broadband frequency comb

Florian Adler, Piotr Masłowski, Aleksandra Foltynowicz, Kevin C. Cossel, Travis C. Briles, Ingmar Hartl, and Jun Ye  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 21861-21872 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (5346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a first implementation of optical-frequency-comb-based rapid trace gas detection in the molecular fingerprint region in the mid-infrared. Near-real-time acquisition of broadband absorption spectra with 0.0056 cm−1 maximum resolution is demonstrated using a frequency comb Fourier transform spectrometer which operates in the 2100-to-3700-cm−1 spectral region. We achieve part-per-billion detection limits in 30 seconds of integration time for several important molecules including methane, ethane, isoprene, and nitrous oxide. Our system enables precise concentration measurements even in gas mixtures that exhibit continuous absorption bands, and it allows detection of molecules at levels below the noise floor via simultaneous analysis of multiple spectral features.

© 2010 OSA

OCIS Codes
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6530) Spectroscopy : Spectroscopy, ultrafast

ToC Category:

Original Manuscript: August 2, 2010
Revised Manuscript: September 24, 2010
Manuscript Accepted: September 25, 2010
Published: September 29, 2010

Florian Adler, Piotr Masłowski, Aleksandra Foltynowicz, Kevin C. Cossel, Travis C. Briles, Ingmar Hartl, and Jun Ye, "Mid-infrared Fourier transform spectroscopy with a broadband frequency comb," Opt. Express 18, 21861-21872 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, “Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model,” Nature 408(6809), 184–187 (2000). [CrossRef] [PubMed]
  2. P. A. Stott and J. A. Kettleborough, “Origins and estimates of uncertainty in predictions of twenty-first century temperature rise,” Nature 416(6882), 723–726 (2002). [CrossRef] [PubMed]
  3. D. J. Karoly, K. Braganza, P. A. Stott, J. M. Arblaster, G. A. Meehl, A. J. Broccoli, and K. W. Dixon, “Detection of a human influence on North American climate,” Science 302(5648), 1200–1203 (2003). [CrossRef] [PubMed]
  4. J. Houghton, “Global warming,” Rep. Prog. Phys. 68(6), 1343–1403 (2005). [CrossRef]
  5. T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85(2-3), 421–426 (2006). [CrossRef]
  6. W. Cao and Y. Duan, “Current status of methods and techniques for breath analysis,” Crit. Rev. Anal. Chem. 37(1), 3–13 (2007). [CrossRef]
  7. P. R. Griffith, and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd edition (John Wiley & Sons, Hoboken, New Jersey, 2007).
  8. D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser & Photon. Rev. 3(4), 343–354 (2009). [CrossRef]
  9. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006). [CrossRef] [PubMed]
  10. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007). [CrossRef] [PubMed]
  11. C. Gohle, B. Stein, A. Schliesser, Th. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007). [CrossRef]
  12. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010). [CrossRef]
  13. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002). [CrossRef]
  14. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-9029 . [CrossRef] [PubMed]
  15. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator,” Appl. Phys. Lett. 85(16), 3366–3368 (2004). [CrossRef]
  16. L. W. Kornaszewski, N. Gayraud, J. M. Stone, W. N. Macpherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, “Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator,” Opt. Express 15(18), 11219–11224 (2007), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-18-11219 . [CrossRef] [PubMed]
  17. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 µm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15(25), 16540–16545 (2007), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-25-16540 . [CrossRef] [PubMed]
  18. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008). [CrossRef] [PubMed]
  19. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectrometry with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009). [CrossRef]
  20. S. Kassi, K. Didriche, C. Lauzin, Xde. G. Vaernewijckb, A. Rizopoulos, and M. Herman, “Demonstration of cavity enhanced FTIR spectroscopy using a femtosecond laser absorption source,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(1), 142–145 (2010). [CrossRef]
  21. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, Th. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010). [CrossRef]
  22. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Dual Comb Spectroscopy at High Signal to Noise,” http://arxiv.org/abs/1001.3865v1 .
  23. M. B. Esler, D. W. T. Griffith, S. R. Wilson, and L. P. Steele, “Precision Trace Gas Analysis by FT-IR Spectroscopy: 1. Simultaneous Analysis of CO2, CH4, N2O, and CO in Air,” Anal. Chem. 72(1), 206–215 (2000). [CrossRef] [PubMed]
  24. E. D. Schulze, S. Luyssaert, P. Ciais, A. Freibauer, I. A. Janssens et al, E. D. Schulze, J. F. Soussana, P. Smith, J. Grace, I. Levin, B. Thiruchittampalam, M. Heimann, A. J. Dolman, R. Valentini, P. Bousquet, P. Peylin, W. Peters, C. Rödenbeck, G. Etiope, N. Vuichard, M. Wattenbach, G. J. Nabuurs, Z. Poussi, J. Nieschulze, and J. H. Gash, “Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance,” Nat. Geosci. 2(12), 842–850 (2009). [CrossRef]
  25. A. R. Ravishankara, J. S. Daniel, and R. W. Portmann, “Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century,” Science 326(5949), 123–125 (2009). [CrossRef] [PubMed]
  26. T. N. Rosenstiel, M. J. Potosnak, K. L. Griffin, R. Fall, and R. K. Monson, “Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem,” Nature 421(6920), 256–259 (2003). [CrossRef] [PubMed]
  27. W. Lei, M. Zavala, B. de Foy, R. Volkamer, M. J. Molina, and L. T. Molina, “Impact of primary formaldehyde on air pollution in the Mexico City Metropolitan Area,” Atmos. Chem. Phys. 9(7), 2607–2618 (2009). [CrossRef]
  28. W. Miekisch, J. K. Schubert, and G. F. E. Noeldge-Schomburg, “Diagnostic potential of breath analysis--focus on volatile organic compounds,” Clin. Chim. Acta 347(1-2), 25–39 (2004). [CrossRef] [PubMed]
  29. K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100(2), 300–306 (2006). [CrossRef]
  30. M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1(1), 014001 (2007). [CrossRef] [PubMed]
  31. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009). [CrossRef] [PubMed]
  32. Mentioning of company names is for technical communication only and does not represent an endorsement of certain products or manufacturers.
  33. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009). [CrossRef]
  34. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58(12), 1452–1461 (2004). [CrossRef] [PubMed]
  35. D. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” SIAM J. Appl. Math. 11(2), 431–441 (1963). [CrossRef]
  36. M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91(3-4), 397–414 (2008). [CrossRef]
  37. D. Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. Atkins, “A multispectrum nonlinear least squares fitting technique,” J. Quant. Spectrosc. Radiat. Transf. 53(6), 705–721 (1995). [CrossRef]
  38. Y. Qu, Z. H. Kang, Y. Jiang, and J. Y. Gao, “Multiline absorption spectroscopy for methane gas detection,” Appl. Opt. 45(33), 8537–8540 (2006). [CrossRef] [PubMed]
  39. A. Karpf and G. N. Rao, “Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy,” Appl. Opt. 48(27), 5061–5066 (2009). [CrossRef] [PubMed]
  40. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-10-7161 . [CrossRef] [PubMed]
  41. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-18-5-4547 . [CrossRef] [PubMed]
  42. T. Gherman, S. Kassi, A. Campargue, and D. Romanini, “Overtone spectroscopy in the blue region by cavity-enhanced absorption spectroscopy with a mode-locked femtosecond laser: application to acetylene,” Chem. Phys. Lett. 383, 353–358 (2004).W. Demtröder, Laser Spectroscopy Vol. 2, Experimental Techniques, 4th edition (Springer, Berlin/Heidelberg, 2008).
  43. C. Wieman and T. W. Hänsch, “Doppler-Free Laser Polarization Spectroscopy,” Phys. Rev. Lett. 36(20), 1170–1173 (1976). [CrossRef]
  44. Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy,” Appl. Phys. B 79(2), (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited