OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 21883–21891

Relation between the contrast in time integrated dynamic speckle patterns and the power spectral density of their temporal intensity fluctuations

Matthijs J. Draijer, Erwin Hondebrink, Marcus Larsson, Ton G. van Leeuwen, and Wiendelt Steenbergen  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 21883-21891 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (952 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Scattering fluid flux can be quantified with coherent light, either from the contrast of speckle patterns, or from the moments of the power spectrum of intensity fluctuations. We present a theory connecting these approaches for the general case of mixed static-dynamic patterns of boiling speckles without prior assumptions regarding the particle dynamics. An expression is derived and tested relating the speckle contrast to the intensity power spectrum. Our theory demonstrates that in speckle contrast the concentration of moving particles dominates over the contribution of speed to the particle flux. Our theory provides a basis for comparison of both approaches when used for studying tissue perfusion.

© 2010 Optical Society of America

OCIS Codes
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 6, 2010
Revised Manuscript: September 9, 2010
Manuscript Accepted: September 14, 2010
Published: September 30, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Matthijs J. Draijer, Erwin Hondebrink, Marcus Larsson, Ton G. van Leeuwen, and Wiendelt Steenbergen, "Relation between the contrast in time integrated dynamic speckle patterns an the power spectral density of their temporal intensity fluctuations," Opt. Express 18, 21883-21891 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Vennemann, R. Lindken, and J. Westerweel, "In vivo whole-field blood velocity measurement techniques," Exp. Fluids 42(4), 495-511 (2007). [CrossRef]
  2. M. J. Draijer, E. Hondebrink, T. G. van Leeuwen, and W. Steenbergen, "Review of laser speckle contrast techniques for visualizing tissue perfusion," Lasers Med. Sci. 24(4), 639-651 (2009). [CrossRef]
  3. R. Bonner and R. Nossal, "Model for Laser Doppler Measurements of Blood Flow in Tissue," Appl. Opt. 20(12), 2097-2107 (1981). [CrossRef] [PubMed]
  4. J. D. Briers and S. Webster, "Laser speckle contrast analysis LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996). [CrossRef]
  5. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8(3), 559-564 (2003). [CrossRef] [PubMed]
  6. D. A. Boas and A. K. Dunn, "Laser speckle contrast imaging in biomedical optics," J. Biomed. Opt. 15(1), 011109 (2010). [CrossRef] [PubMed]
  7. J. D. Briers and S. Webster, "Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields," Opt. Commun. 116, 36-42 (1995). [CrossRef]
  8. J. C. Ramirez-San-Juan, R. Ramos-Garcia, I. Guizar-Iturbide, G. Martinez-Niconoff, and B. Choi, "Impact of velocity distribution assumption on simplified laser speckle imaging equation," Opt. Express 16(5), 3197-3203 (2008). [CrossRef] [PubMed]
  9. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, "Robust flow measurement with multiexposure speckle imaging," Opt. Express 16(3), 1975-1989 (2008). [CrossRef] [PubMed]
  10. P. Zakharov, A. V¨olker, A. Buck, B. Weber, and F. Scheffold, "Quantitative modeling of laser speckle imaging," Opt. Lett. 31(23), 3465-3467 (2006). [CrossRef] [PubMed]
  11. G. E. Nilsson, T. Tenland, and P. A. Oberg, "A New Instrument for Continuous Measurement of Tissue Blood Flow by Light Beating Spectroscopy," IEEE Trans. Biomed. Eng. 27(1), 12-18 (1980). [CrossRef]
  12. D. D. Duncan and S. J. Kirkpatrick, "Can laser speckle flowmetry be made a quantitative tool?" J. Opt. Soc. Am. A 25(8), 2088-2094 (2008). [CrossRef]
  13. P. A. Lynn, Electronic signals and systems (Macmillan, London, 1986).
  14. J. W. Goodman and G. Parry, Laser Speckle and Related Phenomena (Springer-Verlag, New York, 1975).
  15. A. Serov, W. Steenbergen, and F. F. M. de Mul, "Prediction of the photodetector signal generated by Dopplerinduced speckle fluctuations: theory and some validations," J. Opt. Soc. Am. A 18(3), 622-630 (2001). [CrossRef]
  16. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, "Statistics of local speckle contrast,"J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 25(1), 9-15 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited